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Determinantal Point Processes (DPPs)

DPP: Random subset of [N ]

Forall ] € [N],

[IP[]QY] =detK,]

K € RV*N symmetric, 0 < K < Iy: parameter (kernel) of the DPP
Ky = (Kij), e
Eg. P[leY]=K,;, P[L2€Y] =K 1K,, —K{, <P[1eY]P[2€Y]

* Ak.a.L-ensemblesif 0 < K <Iy: P[Y =J]xdetl;, L=K(Uy—-K)"



Binary representation

DPP <— Random binary vector of size N, represented as a subset of [ N].

10011010110100100010 &  {1,4,5,7,9,10,12,15,19)
00110101100100100010 &  {3,46,89,12,15,19)
(Xq, ..., Xy) € {0,1}V o Y C[N]

X;=1 e i€Y]

Model for correlated Bernoulli r.v.s (such as Ising, ...) featuring repulsion.



Applications of DPP’s

DPPs have become popular in various applications:

e Quantum physics (fermionic processes) [Macchi ‘74]

 Document and timeline summarization [Lin, Bilmes ‘12; Yao et al. ‘16]

Image search [Kulesza, Taskar ‘11; Affandi et al. ‘14]

Bioinformatics [Batmanghelich et al. ‘14]

Neuroscience [Snoek et al. ‘13]

Wireless or cellular networks modelization [Miyoshi, Shirai ‘14; Torrisi, Leonardi
‘14; Li et al. ‘15; Deng et al. ‘15]

And they remain an elegant and important tool in probability theory
[Borodin ‘11]



Learning DPPs

* Given Yy, Ys, ..., Y, ® DPP(K), estimate K.
e Approach: Method of moments

 Problem: Is K identified ?



|dentification: D-similarity

» DPP(K") = DPP(K) © det(K;) = det(K;),V/] S [N]

*Eg.: K

e K and DKD are called D-similar.

[Oeding ‘11]
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Method of moments
n
* Diagonal entries: K;; = P[ieY] —— K;; = %z licy,
k=1

* Magnitude of the off-diagonal entries:

n +

K = KK —Pli,j €EY] == I??] = (K\ij\] - %2 1i,jEYk>

k=1

* Signs (up to D-similarity) ?

n

1
Use estimates of higher moments: detK; = — z 1)ey,
n

k=1



Determinantal Graphs

Definition
G =(IN],E): {i,j}EE & Kl-,j * 0.

* *x ()
K=<* * *)
*

-]
%

Examples:

O ¥ X ¥
¥ ¥ X ¥




Cycle sparsity

* Cycle basis: family of induced cycles that span the cycle space

C1+ Cy

()

* Cycle sparsity: length £ of the largest cycle needed to span the cycle

space

* Horton’s algorithm: Find a cycle basis with cycle lengths < € in

O(|E|*N(In N)~1) steps [Horton ’87; Amaldi et al. ‘10]



Cycle sparsity

Theorem: K is completely determined, up to D-similarity, by its
principal minors of order < ¥.

Key: Signs of 1_[ K; ; for each cycle of length < ¢.
{i.jec



Learning the signs

* Assumption: K € K, i.e., either K; ; = 0 or ‘Kl-,j‘ =>a >0
* All K; ;’s and ‘Ki,j
* G is recovered exactly w.h.p.

* Horton’s algorithm outputs a minimum basis B

’s are estimated within n~1/2%-rate

* For all induced cycle C € B
detKC — FC(Ki,i'Ki?j) + 2(—1)|C| 1_[ Ki,j
{t.j}eC
* Recover the sign of 1_[ K; ; w.h.p.
{t.j}ec



Main result

Theorem: Let K € K, with cycle sparsity £ and let € > 0. Then, the

following holds with probability at least 1 — n™4:

There is an algorithm that outputs K in O(|E|3® + nN?) steps for which

" 5 2
n%( > 2+{?(—> >1nN = min‘ﬁ—DKD‘ <€
a-E a D 00

Near-optimal rate in a minimax sense.



Conclusions

 Estimation of K by a method of moments in polynomial time

e Rates of estimation characterized by the topology of the

determinantal graph through its cycle sparsity €.

* These rates are provably optimal (up to logarithmic factors)

* Adaptation to 4.



