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Determinantal Point Processes (DPPs)

DPP: Random subset of [𝑵]

• For all 𝐽 ⊆ 𝑁 , 

ℙ 𝐽 ⊆ 𝑌 = det𝑲𝐽

• 𝑲 ∈ ℝ𝑁×𝑁, symmetric, 0 ≼ 𝐾 ≼ 𝐼𝑁: parameter (kernel) of the DPP 

• 𝐾𝐽 = 𝐾𝑖,𝑗 𝑖,𝑗∈𝐽

• E.g. ℙ 1 ∈ 𝑌 = 𝐾1,1 , ℙ 1,2 ∈ 𝑌 = 𝐾1,1𝐾2,2 − 𝐾1,2
2 ≤ ℙ 1 ∈ 𝑌 ℙ 2 ∈ 𝑌 .

• A.k.a. 𝐿-ensembles if 0 ≺ 𝐾 ≺ 𝐼𝑁:    ℙ 𝑌 = 𝐽 ∝ det 𝐿𝐽 , 𝐿 = 𝐾 𝐼𝑁 − 𝐾
−1.



Binary representation

1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0

𝑋1, … , 𝑋𝑁 ∈ {0,1}
𝑁

↔ {1,4,5,7,9,10,12,15,19}

↔ {3,4,6,8,9, 12,15,19}

↔ 𝑌 ⊆ [𝑁]

DPP ⟷ Random binary vector of size 𝑵, represented as a subset of [𝑵].

𝑋𝑖 = 1 ⇔ 𝑖 ∈ 𝑌

Model for correlated Bernoulli r.v.’s (such as Ising, …) featuring repulsion.



Applications of DPP’s

• Quantum physics (fermionic processes) [Macchi ‘74]

• Document and timeline summarization [Lin, Bilmes ‘12; Yao et al. ‘16]

• Image search [Kulesza, Taskar ‘11; Affandi et al. ‘14]

• Bioinformatics [Batmanghelich et al. ‘14]

• Neuroscience [Snoek et al. ‘13]

• Wireless or cellular networks modelization [Miyoshi, Shirai ‘14; Torrisi, Leonardi
‘14; Li et al. ‘15; Deng et al. ‘15]

DPPs have become popular in various applications:

And they remain an elegant and important tool in probability theory 
[Borodin ‘11]



Learning DPPs

• Given  𝑌1, 𝑌2, … , 𝑌𝑛 ∼ DPP 𝐾 , estimate 𝐾.

• Approach: Method of moments

• Problem: Is 𝐾 identified ?

iid



Identification:𝓓-similarity
• DPP 𝐾′ = DPP 𝐾 ⇔ det 𝐾𝐽

′ = det 𝐾𝐽 , ∀𝐽 ⊆ [𝑁]

⇔ 𝐾′ = 𝐷𝐾𝐷 for some D =

±1
±1
⋱
±1

.

• E.g.: K =
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+ +
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+ +
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+ +
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⇝ 𝐷𝐾𝐷 =

+ −
− +
− +
+ −
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− +

• 𝐾 and 𝐷𝐾𝐷 are called 𝓓-similar.
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[Oeding ‘11]



Method of moments

• Diagonal entries: 𝑲𝒊,𝒊 = ℙ 𝑖 ∈ 𝑌

• Magnitude of the off-diagonal entries:

• Signs (up to 𝓓-similarity) ?

Use estimates of higher moments: 
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Determinantal Graphs

Definition 

𝐺 = 𝑁 ,𝐸 : 𝑖, 𝑗 ∈ 𝐸 ⇔ 𝐾𝑖,𝑗 ≠ 0.

Examples: 

𝐾 =
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Cycle sparsity
• Cycle basis: family of induced cycles that span the cycle space

• Cycle sparsity: length ℓ of the largest cycle needed to span the cycle 

space

• Horton’s algorithm: Find a cycle basis with cycle lengths ≤ ℓ in 

𝑂 𝐸 2𝑁 ln𝑁 −1 steps [Horton ’87; Amaldi et al. ‘10]

𝐶1

𝐶2
𝐶1 + 𝐶2



Cycle sparsity

 

{𝑖,𝑗}∈𝐶

𝐾𝑖,𝑗

Theorem: 𝐾 is completely determined, up to 𝒟-similarity, by its 
principal minors of order ≤ ℓ.

Key: Signs of for each cycle of length ≤ ℓ.



Learning the signs

• Assumption: 𝐾 ∈ 𝒦𝛼, i.e., either 𝐾𝑖,𝑗 = 0 or 𝐾𝑖,𝑗 ≥ 𝛼 > 0

• All 𝐾𝑖,𝑖’s and 𝐾𝑖,𝑗 ’s are estimated within 𝒏−𝟏/𝟐-rate

• 𝐺 is recovered exactly w.h.p.

• Horton’s algorithm outputs a minimum basis ℬ

• For all induced cycle 𝐶 ∈ ℬ

det𝐾𝐶 = 𝐹𝐶 𝐾𝑖,𝑖 , 𝐾𝑖,𝑗
2 + 2 −1 |𝐶|  

{𝑖,𝑗}∈𝐶

𝐾𝑖,𝑗

• Recover the sign of w.h.p. 

{𝑖,𝑗}∈𝐶

𝐾𝑖,𝑗



Main result

Theorem: Let 𝐾 ∈ 𝒦𝛼 with cycle sparsity ℓ and let 𝜀 > 0. Then, the 

following holds with probability at least 1 − 𝑛−𝐴:

There is an algorithm that outputs  𝐾 in 𝑂 𝐸 3 + 𝑛𝑁2 steps for which

𝑛 ≳
1

𝛼2𝜀2
+ ℓ
2

𝛼

2ℓ

ln𝑁 ⇒ min
𝐷
 𝐾 − 𝐷𝐾𝐷

∞
≤ 𝜀

Near-optimal rate in a minimax sense.



Conclusions

• Estimation of 𝐾 by a method of moments in polynomial time

• Rates of estimation characterized by the topology of the     

determinantal graph through its cycle sparsity ℓ.

• These rates are provably optimal (up to logarithmic factors)

• Adaptation to ℓ.


