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k-means quantization/clustering

Let P be a probability measure on Rd, X ∼ P random vector
k-means clustering/quantization problem:

D(Q) = D(Q;P ) := Emin
a∈Q
|X − a|2 → min

Q⊂Rd:|Q|=k

Clustering: clusters are Voronoi cells
Vi(Q) :=

{
x ∈ Rd : |x− ai| = min

j
|x− aj |

}
, Q = (a1, . . . , ak)

Quantization: Q = (a1, . . . , ak) is a “codebook”,
i(x) := argmin

j=1,...,k
|x− aj | is a “code”

Some history:

Steinhaus (1957): division of a body in Rd

Lloyd (1957): algorithm for signal quantization

MacQueen (1967): “k-means” name
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Example: color quantization

original

k = 3 k = 5 k = 10
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k-means in metric spaces

Let P be a probability measure on a metric space (X , d), X ∼ P

D(Q) = D(Q;P ) := Emin
a∈Q

d2(X, a)→ min
Q⊂X :|Q|=k

Existence of solution: E d2(X,x0) <∞ for some x0 ∈ X ; there is a
weak topology τw on X s.t. any closed ball Br(x) is compact in τw

Examples: separable reflexive Banach spaces, Wasserstein spaces on Rd,
Riemannian manifolds
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Statistical setting

Given an i.i.d. sample X = (X1, . . . , Xn) ∼ P we want to construct an
empirical quantizer Q̂ ⊂ X , |Q̂| = k

Measure of quality: excess distortion D(Q̂)−D(Q∗), where Q∗ is an
optimal quantizer

Our goal is to get Q̂ with good PAC bounds:

P
{
D(Q̂)−D(Q∗) > ε(n, δ)

}
≤ δ
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ERM consistency

Risk minimization problem =⇒ empirically optimal quantizer:

Q̂n := argmin
Q⊂X :|Q|=k

n∑
i=1

min
a∈Q

d2(Xi, a)

Strong consistency (Pollard, 1981): let X1, X2, · · · ∼ P be an i.i.d.
sequence in Rd and E|X|2 <∞; then

D(Q̂n)−D(Q∗)
a.s.−−→ 0 as n→∞

Under additional assumptions
√
n(Q̂n −Q∗) is asymptotically normal

(Pollard, 1982)

Q: What about non-asymptotic rates of convergence?
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ERM rates: bounded support in Hilbert space
Let X be a separable Hilbert space. Assume ‖X‖ ≤ T a.s.
Non-asymptotic bounds on the excess distortion w.p. at least 1− δ:

Linder, Lugosi, and Zeger (1994): X = Rd,

D(Q̂n)−D(Q∗) . T 2

(√
kd log n

n
+

√
log(1/δ)

n

)
Biau, Devroye, and Lugosi (2008):

D(Q̂n)−D(Q∗) . T 2

(√
k2

n
+

√
log(1/δ)

n

)
Fefferman, Mitter, and Narayanan (2016):

D(Q̂n)−D(Q∗) . T 2

(√
k(log n)4

n
+

√
log(1/δ)

n

)
Appert and Catoni (2021):

D(Q̂n)−D(Q∗) . T 2

(√
k log2(n/k) log k

n
+

√
log(1/δ)

n

)
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ERM rates: light tails

Cadre and Paris (2012): if ‖X‖ is sub-exponential, then with probability

at least 1− δ −O
(
e−rn

1.5
)

D(Q̂n)−D(Q∗) . R2(P )
k log k

δ√
n
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Questions

1 Heavy-tailed distribution: what if P has only two moments?

2 Outliers: what if the sample is contaminated?

3 (Sub-)optimality of ERM: can we do better?
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Goals

Construct a quantizer Q̂ that

1 handles general metric space

2 is robust to heavy-tailed distributions/outliers

3 has a sub-Gaussian rate even for heavy tails
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Counterexample

Take X = R, k = 2

Define the distributions Pn: Pn({0}) = 1− 1
n , Pn({

√
n}) = 1

n .
Then EX∼Pn |X|2 = 1 and D(Q∗;Pn) = 0.

Let X1, . . . , Xn ∼ Pn. Then with constant probability
X1 = · · · = Xn = 0, hence Q̂ = {0}, D(Q̂;Pn) = 1.

Problem: there is too small cluster
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Minimal cluster assumption

Voronoi cells (clusters) of Q = {a1, . . . , ak} ⊂ X :

Vi(Q) :=
{
x ∈ X : d(x, ai) ≤ d(x, aj), 1 ≤ j < i,

d(x, ai) < d(x, aj), i < j ≤ k
}

Recall: let | suppP | ≥ k and E d2(X,x0) <∞, then there is
0 < pmin ≤ mini P (Vi(Q

∗)).

Suppose we are given a lower bound pmin > 0 such that npmin � 1 =⇒
no “invisible” cluster. Our empirical quantizer and bounds will depend on
pmin.
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Approaches to robust M-estimators

Robust loss: `1, Huber loss, . . .

Consensus: RANSAC, median of means, . . .

Truncation: trimmed mean, . . .

Alexey Kroshnin Robust k-means 11–13 Oct. 2023, ENSAE 13 / 26



Approaches to robust M-estimators: k-means

Robust loss: k-medians, information k-means (Appert and
Catoni, 2021)

Consensus: MoM (Klochkov, Kroshnin, and Zhivotovskiy, 2021)

Truncation: trimmed k-means (Cuesta-Albertos, Gordaliza, and
Matrán, 1997)
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Trimmed constrained k-means

Trimming operator:

Tη(`;P ) := inf

{ˆ
`ρdP : ρ ≥ 0,

ˆ
ρ dP = 1− η

}
, 0 ≤ η ≤ 1

Given a confidence level δ ∈ (0, 1) and a lower bound pmin > 0 on the
mass of clusters, define a quantizer

Q̂tr := argmin
Q⊂X :|Q|=k

Pn(Vj(Q))≥pmin/2

Tη(d
2(·, Q);Pn)

with η := 6 log(2/δ)
n .
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Rate of convergence: finite-dimensional space

Let X = Rd. If npmin & log(1/δ), then with probability at least 1− δ

D(Q̂tr)−D(Q∗) . D(Q∗)

(
(log k)

√
d+ log k

npmin
+

√
log(1/δ)

npmin

+ (log k)2
d+ log k

npmin

)
The same bound holds if

logN (BR(x), t) . d log
R

t
, x ∈ X , 0 < t ≤ R,

where N (BR(x), t) is the covering number of the ball BR(x) ⊂ X

Cf. bounded case: D(Q∗)√
pmin

instead of T 2
√
k
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Rate of convergence: finite-dimensional space

Trimmed k-means:

D(Q̂tr)−D(Q∗) . D(Q∗)

(
(log k)

√
d+ log k

npmin
+

√
log(1/δ)

npmin

+ (log k)2
d+ log k

npmin

)
MoM k-means:

D(Q̂tr)−D(Q∗) . E d2(x0, X)

(√
d log k

npmin
+

√
log(1/δ)

npmin

)
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Rate of convergence: Hilbert space

Let X be a Hilbert space. Then with probability at least 1− δ

D(Q̂tr)−D(Q∗) . D(Q∗)

(
(log n)2
√
npmin

+

√
log(1/δ)

npmin
+

(log n)4

npmin

)

MoM k-means:

D(Q̂tr)−D(Q∗) . E d2(x0, X)

(
(log n)

√
log k

npmin
+

√
log(1/δ)

npmin

)

Idea: Johnson–Lindenstrauss lemma
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Rate of convergence: functional spaces

Let with some γ ≥ 0, A ≥ 1

logN (BR(x), t) ≤ A
(
R

t

)γ
log

R

t
, x ∈ X , 0 < t ≤ R

Examples: Sobolev space, Hölder space, Wasserstein space with a majorant

Then with probability at least 1− δ

D(Q̂tr)−D(Q∗) .γ



D(Q∗)

(
(log k)

√
A+log k
npmin

+
√

log(1/δ)
npmin

+ . . .

)
, γ < 2

D(Q∗)

(√
A(logn)3

npmin
+
√

log(1/δ)
npmin

+ . . .

)
, γ = 2

D(Q∗)

(
(logn)1−γ/4√

kpmin

(
Ak
n

)1/γ
+
√

log(1/δ)
npmin

+ . . .

)
, γ > 2
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Outliers

Suppose that instead of X we observe an (adversarially) contaminated
sample X ′. If we are given an upper bound no ≥ |X ′ \X|, then we set

η := 2
no
n

+ 6
log(1/δ)

n

npmin & no =⇒ no “wiped out” cluster, the bounds hold with

log(1/δ) 7→ no
n

+ log(1/δ)
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Lower bounds: bounded case

Antos (2005): for any d, k, n ∈ N, k . n, and empirical quantizer Q̂ there
is a distribution P on B1(0) ⊂ Rd such that

ED(Q̂)−D(Q∗) & k−2/d
√
k

n
& D(Q∗)

√
k

n

No contradiction with upper bounds: pmin ≤ 1
k !
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Lower bounds: pmin

Let X = R, k = 4. For any Q̂ there is a distribution P on R such that
with probability at least 1

4

D(Q̂)−D(Q∗) &
D(Q∗)
√
npmin

.

2/
√
p1/

√
p0−1/√p−2/√p

(1− δ)p/4 (1− δ)p/4 (1 + δ)p/4 (1 + δ)p/41− p
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Ingredients of the proof

With high probability Q̂tr belongs to a nice class

Bound on a squared loss for a functional class with finite L∞-diameter
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Class of quantizers

Due to the minimal cluster assumption, with high probability

k∑
i=1

d2(ai, Q
∗),

k∑
i=1

d2(a∗i , Q̂tr) .
Tη(Q

∗;Pn)

pmin
.
D(Q∗)

pmin

where Q∗ = (a∗1, . . . , a
∗
k), Q̂tr = (a1, . . . , ak). Therefore, Q̂tr ∈ Qk,

Qk :=

{
Q ⊂ X : |Q| = k, Q ⊂

k⋃
s=1

BRs(a
∗
π(s)), Q

∗ ⊂
k⋃
s=1

BRs(aπ′(s))

}
,

where π, π′ are permutations and

Rs := C

√
D(Q∗)

spmin
, s = 1, . . . , k
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Master bound

Let F be a functional class such that for some M > 0

|f − g| ≤M ∀f, g ∈ F

Suppose

En(F) := sup
Xn

inf
β>0

(
β +

1√
n

ˆ ∞
β

√
logN∞(F , t, Pn) dt

)
<∞

Then with probability at least 1− δ for all f ∈ F

Pf2−Pf2∗ ≤ Tη(f2;Pn)−Tη(f2∗ ;Pn)+
√
Pf2∗

(
En(F) +M

√
log 1/δ

n

)

+ E2n(F) +M2 log 1/δ

n

where f∗ := argminf∈F Pf
2
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Combining ingredients

Consider
Fk := {d(·, Q) : Q ∈ Qk}

Then

‖f − g‖L∞(Pn) .

√
D(Q∗)

pmin

ˆ ∞
β

√
logN∞(Fk, t, Pn) dt .

√
D(Q∗)

pmin
(log k)3/2

+

ˆ ∞
β

√√√√ k∑
s=1

logN (BRs , t) dt

The master bound yields the result after estimating the Dudley integral
En(Fk)
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Plan of talk:

(1) What is Hess-Schrader-Uhlenbrock inequality?

(2) Theory of Dirichlet spaces

(3) What is tamed Dirichlet space?

(4) Precise definition of tamed Dirichlet space

(5) Results (6) Recent known results

(7) Vector space calculus (8) Sketch of Proof



1 What is Hess-Schrader-Uhlenbrock inequality?

Hess-Schrader-Uhlenbrock (’77,’80), Simon(’79):

(M, g): a cpt R-mfd ∂M = ∅, Ric ≥ K

=⇒ |PHK
t ω| ≤ e−KtPt|ω|, ω ∈ Γ(T ∗M).

PHK
t = et∆

HK
: L2-semigroup of de Rham-Hodge-Kodaira

Laplacian ∆HK = −(dd∗ + d∗d).

Ouhabaz (’99),Shigekawa(’97,’00): cpt (M,g) cvx ∂M .

Hsu (’02): cpt (M,g) ∂M , Güneysu (’17),

Driver-Thalmaier (01), Elworthy-Le Jan-Li (’99): non-cpt



2 Theory of Dirichlet spaces

(D,H1,2(Rd)): classical Dirichlet integral:

D(f, g) =

∫
Rd
⟨∇f(x),∇g(x)⟩dx, f, g ∈ H1,2(Rd)

=

∫
Rd
(−∆f(x))g(x)dx f, g ∈ C2

c (R
d).

X = (Ω, Bt,Px): Brownian motion on Rd:
Px(Bt ∈ A) =

∫
A

pt(x, y)dy =

∫
A

1

(2πt)d/2
e−

|x−y|2
2t dy

= Tt1A(x) := “et∆/21A(x)”

: L2-semigroup ass. to

(
1

2
D,H1,2(Rd)

)
.



(E, D(E)): Dirichlet form on L2(M ;m) iff

(i) non-negative symmetric bilinear form on L2(M ;m),

whose domain D(E) is desely defined in L2(M ;m)

(ii) D(E) is complete w.r.t. E
1/2
1 -norm,

where E1(f, g) := E(f, g)+ (f, g)m for f, g ∈ D(E).

(iii) For f ∈ D(E), f ] := 0 ∨ f ∧ 1 ∈ D(E) &

E(f ], f ]) ≤ E(f, f).

If (E, D(E)) is (quasi-)regular, ∃X = (Ω, Xt,Px) s.t.

Ttf(x) = Ex[f(Xt)] m-a.e. for f ∈ L2(M ;m)∩B(M).



Fukushima(’76), Albeverio-Ma-Röckner (’91,’92,’93)

(From Wikipedia & Personal HP)

See Fukushima-Oshima-Takeda (’10), Oshima(’13),

Ma-Röckner (’92)



3 What is tamed Dirichlet space?

Roughly speaking, tamed Dirichlet space is a

• strongly local Dirichlet space (E, D(E)) on L2(M ;m)

⇔ X = (Ω, Xt,Px): m-sym. diffusion process onM .

• (E, D(E)) has a lower bound κ of Ricci curvature in

distribution sense: weak Bakry-Émery condition.

• κ := κ+ − κ−: signed measure s.t. κ+ has bounded

potential U1κ
+, 2κ− is of (extended) Kato class.



The notion of tamed Dirichlet space was proposed by

Erbar-Rigoni-Sturm-Tamanini (’22) and its vector space

calculus was developed by Braun (’22+):

(From Wikipedia & Personal HP)

Very nice framework!, but sub-Riem. mfds, Φ4
2-model,

super process of immigration models are not included in.



4 Precise definition of tamed Dirichlet space

(M, τ ): top. Lusin space

m: σ-finite Borel measure with full support

(f, g)m: L2-inner product

(E, D(E)): strongly local quasi-regular

Dirichlet form on L2(M ;m)

(Pt)t≥0: Markov L2-semigroup ⇔ (E, D(E))

X = (Ω, Xt, Px): m-sym diffusion process s.t.

Ptf = E•[f(Xt)] m-a.e. for f ∈ L2(M ;m) ∩ B(M)



µ⟨f,g⟩ = Γ(f, g)dm, f, g ∈ D(E): (signed finite) energy

measure E(f, g) = µ⟨f,g⟩(M) =
∫
M Γ(f, g)dm.

κ ∈ S(X), κ = κ+ − κ−; Jordan-Hahn decomposition.∥∥∥E•

[
Aκ+

t

]∥∥∥
∞
< ∞ ∃/∀t > 0 ⇐⇒ κ+ ∈ SD(X).

lim
t→0

∥∥∥E•

[
Aκ−
t

]∥∥∥
∞
<

1

2
⇐⇒ 2κ− ∈ SEK(X).

Define (E2κ, D(E2κ)) by

E2κ(f, g) := E(f, g) + 2

∫
M

f̃ g̃dκ,

f, g ∈ D(E2κ) = D(E).



Then this is a closed bilinear form bounded below s.t.

∃α0 > 0, C > 0

C−1E1(f) ≤ E2κ
α0
(f) ≤ CE1(f) for all f ∈ D(E).

Here E2κ
α0
(f, g) = E2κ(f, g) + α0(f, g)m and

E1(f, g) = E(f, g) + (f, g)m.



Consider a CAF Aκ
t := Aκ+

t −Aκ−
t (= Kt if κ = Km)

and Feynman-Kac semi-group (p2κt )t≥0 by

p2κt f(x) := Ex[e
−2Aκt f(Xt)], f ∈ Bb(M).

Then (p2κt f, g)m = (f, p2κt g)m, f, g ∈ B+(M). More-

over, (p2κt )t≥0 coincides with (P 2κ
t )t≥0 on L2(M ;m) as-

sociated to (E2κ, D(E2κ)). Under such conditions, the

stochastic semi-group (pκt )t≥0 can be extended a semi-

group P κ
t on Lp(M ;m) for each p ∈ [1,+∞]. Let ∆2κ

be an L2-generator associated to (E2κ, D(E2κ)).



Def 4.1 (Tamed Dirichlet space, i.e. BE2(κ,N))

κ+, κ− as defined before. Fix N ∈ [1,+∞].

(M,E,m) or M is said to satisfy 2-Bakry-Émery condi-

tion (BE2(κ,N) in short), if the following holds:

For ∀f ∈ D(∆) with ∆f ∈ D(E) & ∀φ ∈ D(∆2κ) ∩

L∞(M ;m)+ with ∆2κφ ∈ L∞(M ;m),

1

2

∫
M

Γ(f)∆2κφdm−
∫
M

φΓ(f,∆f)dm ≥
1

N

∫
M

φ(∆f)2dm.

When N = +∞, the right-hand vanishes.



κ+, κ− as defined before. (M,E,m) or simply M satis-

fies BE2(κ,N), we call (E, D(E)) Tamed Dirichlet space.

Thm 4.1 (Erbar-Rigoni-Sturm-Tamanini (’22))

κ+, κ− as defined before. Then BE2(κ,∞)⇔ GE1(κ,∞).

GE1(κ,∞) :
√
Γ(Ptf) ≤ P κ

t

√
Γ(f), f ∈ D(E). (1)

Here P κ
t associates to pκt h(x) := Ex[e−A

κ
t h(Xt)]. More-

over, the following Test(M) forms an algebra.

Test(M) :={f ∈ D(∆) ∩ L∞(M ;m) |

Γ(f) ∈ L∞(M ;m),∆f ∈ D(E)}. (2)



Ex 4.1 (Examples of Tamed Dirichlet spaces)

• RCD(K,N)-spaces,

• Abstract Wiener space (B,H, µ),

• cpt R-manifolds with boundary, ERST(’22),

• Almost smooth metric measure space with BE2-condition,

This is not an RCD-space, Honda (’18),

• Infinite particle systems on (M,g) with Ric ≥ K with-

out interaction under Poisson measure: Albeverio

-Kondratiev-Röckner (’98), Dello Schiavo-Suzuki (’22+).



5 Results

Thm 5.1 (Hess-Schrader-Uhlenbrock inequality)

We have the following: Recall pκt h(x) = Ex[e−A
κ
t h(Xt)].

(1) For ∀ω ∈ L2(T ∗M) and α > Cκ,

|RHK
α ω| ≤ Rκ

α|ω| m-a.e. (3)

(2) For ∀ω ∈ L2(T ∗M) and every t ≥ 0,

|PHK
t ω| ≤ P κ

t |ω| m-a.e. (4)



Cor 5.1 (C0-property of (PHK
t )t≥0 on Lp(M ;m))

Suppose p ∈ [2,+∞], or κ− ∈ SK(X) and p ∈ [1,+∞].

Then the heat flow (PHK
t )t≥0 can be extended to a semigroup

on Lp(T ∗M) and and for each t > 0

∥PHK
t ω∥Lp(T ∗M) ≤ C(κ)eCκt∥ω∥Lp(T ∗M), ω ∈ Lp(T ∗M).

Moreover, if κ− ∈ SK(X) and p ∈ [1,+∞[, then (PHK
t )t≥0

is strongly continuous on Lp(T ∗M), i.e., (PHK
t )t≥0 is a C0-

semigroup on Lp(T ∗M), and further (PHK
t )t≥0 is weakly* con-

tinuous on L∞(T ∗M).



Thm 5.2 (Esaki-Xu-K(23+)) The Riesz operator Rα(∆)

defined by Rα(∆)f := Γ((α − ∆)−
1
2f)

1
2 is bounded on

Lp(X;m) under κ− ∈ SK(X) and p ∈ [2,+∞[.

Ex 5.1 (New examples)

• a class of R-mfd with boundary s.t. κ = kv + `σ, v := volg,

σ: surface measure on ∂M of Kato, Ric ≥ k: Kato function,

` is a lower bounds of second fundamental form on ∂M .

• Configuration space (Υ,EΥ, π) without interactions over (M, g)

having Ric ≥ K.



6 Recent known results

Braun (’22): Thm 5.1 & Cor 5.1 are proved for

RCD(K,∞). Note that abstract Wiener space (B,H, µ)

(satisfying CD(1,∞) by Fang-Shao-Sturm(’10)) is not

an RCD(1,∞)!, so not included in this setting.

Braun (’22+): Thm 5.1 is proved for tamed Dirichlet

space under the that ∃k ∈ L1
loc(M ;m) s.t. κ = km and

|k|m ∈ SEK(X) and ∃K ∈ R s.t. k ≥ K on M .

(B,H, µ) is included in this setting.



7 Vector space calculus over tamed space

Vector space calculus was established by Braun (’22+),

which was a natural extension of the vector space calcu-

lus for RCD-space developed by Gigli (’18).

The proof for κ = Km is easy. New point is that

κ is not necessarily of constant nor of function! This

causes another technical difficulty.



So you can follow the proof below for

(M, g): smooth Riemmannian mfd with ∂M ̸= ∅

n := dim(M), v = volg, Ricx ≥ k(x)gx

k(x): Kato class function on M

σ: surface measure on ∂M of Kato class

`: lower bound of second fundamental form

=⇒ BE2(κ, n) with κ = kv + `σ.

But this concrete expression is not so important in the

proof. Essential point is the (extended) Kato class con-

dition for 2κ−!



8 Sketch of proof

Lem 8.1 (Braun (’22+)) For X ∈ H1,2(TM),

|∇|X|| ≤ |∇X|HS: Kato’s inequality.

Lem 8.2 X ∈ H1,2(TM) implies |X| ∈ D(E) and

E(|X|, |X|) ≤ Ẽcov(X,X) < ∞. (5)

For f ∈ D(E) ∩ L∞(M ;m)+ with fX ∈ H1,2(TM), we

have f |X| ∈ D(E) and

E(|X|, f |X|) ≤ Ẽcov(X, fX). (6)



Proof. The proof of (5) can be directly deduced from

Lem 9.1. Next we show (6). Assume fX ∈ H1,2(TM)

for f ∈ D(E) ∩ L∞(M ;m)+. By (5), we have f |X| ∈

D(E). Moreover, due to Braun (’22+),

|PB
t X| ≤ Pt|X| m-a.e.

we have

((I − Pt)|X|, f |X|)L2(M ;m) ≤ ((I − PB
t )X, fX)L2(TM).

Divided by t > 0 and letting t → 0, we obtain (6). □



Lem 8.3 Take ω ∈ H1,2(T ∗M)(= D(EHK)). Then |ω| ∈

D(E) and
Eκ(|ω|, |ω|) ≤ EHK(ω, ω). (7)

Proof. ω ∈ H1,2(T ∗M) implies ω] ∈ H1,2(TM) and

|ω| = |ω]| ∈ D(E). Then

E(|ω|, |ω|) = E(|ω]|, |ω]|)
(5)

≤ Ẽcov(ω
], ω])

≤ EHK(ω, ω) − ⟨κ, |ω|2⟩,

which implies the conclusion. The last inequality is due

to Braun (’22+). □



Lem 8.4

(i) ω ∈ H1,2(T ∗M)∩L∞(T ∗M) & f ∈ D(E)∩L∞(M ;m)

⇒ fω ∈ H1,2(T ∗M) ∩ L∞(T ∗M).

(ii) ω ∈ H1,2(T ∗M) and f ∈ Test(M)⇒ fω ∈ H1,2(T ∗M).

Proof. The following are due to Braun (’22+):

(i) X ∈ H1,2(TM)∩L∞(TM)& f ∈ D(E)∩L∞(M ;m)

⇒ fX ∈ H1,2(TM) ∩ L∞(TM).

(ii) X ∈ H1,2(TM)& f ∈ Test(M)⇒ fX ∈ H1,2(TM).

□



Lem 8.5 Take ω ∈ H1,2(T ∗M) and f ∈ Test(M)+.

Then f |ω| ∈ D(Eκ) = D(E) and

Eκ(|ω|, f |ω|) ≤ EHK(ω, fω). (8)

Proof. By Lem 8.4, we have fω ∈ H1,2(T ∗M) &

f |ω| ∈ D(E). By Braun (’22+), we have

Ric(ω], fω])(M) = EHK(ω, fω) − Ẽcov(ω
], fω]). (9)

Here the LHS is the total mass of Ricci curvature mea-

sure defined by Braun (’22+).



By Lem 8.2, we then have

Eκ(|ω|, f |ω|) = E(|ω|, f |ω|) + ⟨κ, f |ω|2⟩

≤ Ẽcov(ω
], fω]) + ⟨κ, f |ω|2⟩

(9)
= EHK(ω, fω) − Ricκ(ω], fω])(M)

= EHK(ω, fω) −
∫
M

f̃dRicκ(ω], ω])

≤ EHK(ω, fω).

Cor 8.1 Take ω ∈ D(∆∆HK)∩L∞(T ∗M) and f ∈ D(E)∩

L∞(M ;m)+. Then fω ∈ H1,2(T ∗M), f |ω| ∈ D(E) ∩

L∞(M ;m), and (8) hold.



Lem 8.6 Take ω ∈ D(∆∆HK) ∩ L∞(T ∗M). Then(
−∆∆HKω, g

ω

|ω|

)
L2(T ∗M)

≥ Eκ(|ω|, g) ∀g ∈ Test(M)+.

(10)

Here we set ω/|ω| := 0 if ω = 0.

Proof. By Lem 8.3, we see |ω| ∈ D(E) ∩ L∞(M ;m).

For each ε > 0, we set |ω|ε :=
√
|ω|2 + ε2. Then we

see
|ω|
|ω|ε

∈ D(E) ∩ L∞(M ;m). For g ∈ Test(M)+, we

set f := g/|ω|ε ∈ D(E) ∩ L∞(M ;m)+.



We apply Cor 8.1 for f ∈ D(E) ∩ L∞(M ;m)+ so that

fω ∈ H1,2(T ∗M), f |ω| ∈ D(E) and(
−∆∆HKω, g

ω

|ω|ε

)
L2(T ∗M)

≥
∫
M

|ω|
|ω|ε

Γ(|ω|, g)dm

+

〈
κ, g

|ω|2

|ω|ε

〉
.

Letting ε → 0, we obtain the conclusion.

Lem 8.7 Suppose ω ∈ H1,2(T ∗M). Then∫ t

0

∫
M

˜|PHK
s ω|

2

dκ−ds < ∞. (11)



Lem 8.8 For ∀ω ∈ L2(T ∗M) and t > 0, we have

|PHK
t ω|2 ≤ P−2κ−

t |ω|2 m-a.e. (12)

In particular, for ω ∈ L2(T ∗M) ∩ L∞(T ∗M) and α > Cκ,

∥RHK
α ω∥L∞(T ∗M) ≤

√
C(κ)

α− Cκ
∥ω∥L∞(T ∗M). (13)

Hence,RHK
α ω ∈ L∞(T ∗M) forω ∈ L2(T ∗M)∩L∞(T ∗M).

Proof. We may assume κ+ = 0, because BE2(−κ−,∞)

is satisfied. We may assume ω ∈ H1,2(T ∗M).

Take g ∈ Test(M)+. and set gαRαg.



We now set a function Fn : [0, t] → R defined by

Fn(s) :=

∫
M

P 2κ
t−sgα nP 1

n
Gn|PHK

s ω|2dm.

After a long calculation,

1

n
F ′
n(s) ≤ 2

∫
M

p 1
n
Rnp

2κ
t−sgα

˜|PHK
s ω|

2

dκ−

− 2

∫
M

(p2κt−sgα) p 1
n
Rn

˜|PHK
s ω|

2

dκ−. (14)

lim
n→∞

F ′
n(s) ≤ 2

∫
M

p2κt−sgα
˜|PHK
s ω|

2

dκ−

− lim
n→∞

2

∫
M

p2κt−sgα np 1
n
Rn

˜|PHK
s ω|

2

dκ− ≤ 0,

≤ 0. (15)



By way of Monotone convergence theorem for fn(s) :=

inf `≥n
(
−F ′

`(s)
)
, we get

lim
n→∞

∫ t

0

F ′
n(s)ds ≤ 0.

Thus,

lim
n→∞

(∫
M

gα nP 1
n
Gn|PHK

t ω|2dm

−
∫
M

(P 2κ
t−sgα)nP 1

n
Gn|ω|2dm

)
≤ lim

n→∞

∫ t

0

F ′
n(s)ds ≤ 0.



Since lim
n→∞

∥P 1
n
nGnf−f∥L1(M ;m) = 0 for f ∈ L1(M ;m),

we have∫
M

gα|PHK
t ω|2dm ≤

∫
M

(P 2κ
t gα)|ω|

2dm =

∫
M

gαP
2κ
t |ω|2dm.

Since αgα = αRαg ∈ L∞(M ;m) weakly* converges

to g in L∞(M ;m) as α → ∞ and g ∈ L2(M ;m) ∩

L∞(M ;m) ∩ B+(M) is arbitrary, we obtain (12).



Proof. of Thm 5.1 Take g ∈ Test(M)+. Then, for

ω ∈ D(∆∆HK) ∩ L∞(T ∗M)∫
M

(∆g − αg)|ω|dm −
∫
M

g|ω|dκ

≥
∫
M

g

(〈
∆∆HKω,

ω

|ω|

〉
− α|ω|

)
dm

=

∫
M

g

〈
∆∆HKω − αω,

ω

|ω|

〉
dm

≥ −
∫
M

g
∣∣∆∆HKω − αω

∣∣ dm
by Lem 8.6, hence

Eκα(|ω|, g) ≤
∫
M

g
∣∣(α− ∆∆HK)ω

∣∣ dm. (16)



Since Test(M)+ is dense in D(E)+, (16) holds for any

g ∈ D(E)+. By Lem 8.8, for α > Cκ, we can set

ω := RHK
α η ∈ D(∆∆HK)∩L∞(T ∗M) for η ∈ L2(T ∗M)∩

L∞(T ∗M) and g := Rκ
αψ with ψ ∈ L2(M ;m)+. Then

we see

(ψ, |RHK
α η|)m ≤ (ψ,Rκ

α|η|)m for any ψ ∈ L2(M ;m)+.

This implies that for α > Cκ and η ∈ L2(T ∗M) ∩

L∞(T ∗M)

|RHK
α η| ≤ Rκ

α|η| m-a.e. (17)



By approximation, we can deduce that (17) holds for gen-

eral η ∈ L2(T ∗M).

From (17), we can obtain that |PHK
t η| ≤ P κ

t |η| m-

a.e. for each t > 0 in view of the following observation:

P κ
t f = lim

n→∞

(
n

t

)n
(Rκ

n
t
)nf, f ∈ L2(M ;m),

PHK
t θ = lim

n→∞

(
n

t

)n
(RHK

n
t

)nθ θ ∈ L2(T ∗M).



Thank you for your attention.

Nous vous remercions de votre

attention.

Vielen Dank für Ihre Aufmerksamkeit.



9 Vector space calculus over tamed space

In this section, we summarize the results by Braun (’22+).

This was a natural extension of the vector space calculus

for RCD-space developed by Gigli (’18).

Def 9.1 (Lp-normed L∞-module)

Given p ∈ [1,+∞], a real Banach space (M, ∥ · ∥M),

or simply, M is called an Lp-normed L∞-module (over

(M,m)) if it satisfies



(a) a bilinear map · : L∞(M ;m) × M → M satisfying

(fg) · v = f · (gv),

1M · v = v,

(b) a nonnegatively valued map | · |m : M → Lp(M ;m) s.t.

|f · v|m = |f ||v|m m-a.e.,

∥v∥M = ∥|v|m∥Lp(M ;m),

for ∀f, g ∈ L∞(M ;m) and v ∈ M. If only (a) is sat-

isfied, we call (M, ∥ · ∥M) or simply M an L∞(M ;m)-

module.



We always assume that for ∀v ∈ M, |v|m is Borel. M

is called Hilbert module if is an L2-normed L∞-module,

in this case, the point-wise norm | · |m induces a point-

wise scalar product ⟨·, ·⟩m : M×M → L1(M ;m) which

is L∞-bilinear, m-a.e. nonnegative definite, local in both

components, satisfies the point-wisem-a.e. Cauchy-Schwarz

inequality.



Def 9.2 (Dual module)

We can define the dual module M∗ by

M∗ := Hom(M, L1(M ;m))

and will be endowed with the usual operator norm. The

point-wise paring between v ∈ M and L ∈ M∗ is de-

noted by L(v) ∈ L1(M ;m). If M is Lp-normed, then

M∗ is an Lq-normed L∞-module, where p, q ∈ [1,+∞]

with 1/p+ 1/q = 1.



Def 9.3 (Tensor products) LetM1 andM2 be two Hilbert

module. We can define the tensor product M1⊗M2 the

∥·∥M1⊗M2-completion of the subspace that consists of all

A ∈ M0
1⊙M0

2 s.t. ∥A∥M1⊗M2 < ∞. Here M0
i (i = 1, 2)

is the L0-module induced by Mi and M0
1 ⊙M0

2 is the al-

gebraic tensor product.

Def 9.4 (Exterior product) The exterior product ΛM is

defined as the completion w.r.t. ∥ · ∥ΛM of the subspace

consisting of all ω ∈ ΛM0 s.t. ∥ω∥ΛM < ∞.



Let (E, D(E)) be a quasi-regular strongly local Dirich-

let form on L2(M ;m). We define the cotangent module

L2(T ∗M), i.e., the space of differential 1-forms that are

L2-integrable in a certain “universal” sense.

Def 9.5 (Pre-cotangent module)

We define the pre-cotangent module Pcm by

Pcm : =

{
(fi, Ai)i∈N

∣∣∣∣∣ (Ai)i∈N Borel partition of M,

(fi)i∈N ⊂ D(E)e,
∑
i∈N

∫
Ai

Γ(fi)dm < ∞
}



Moreover, we define a relation∼ on Pcm by (fi, Ai)i∈N ∼

(gj, Bj)j∈N if and only if
∫
Ai∩Bj

Γ(fi − gj)dm = 0 for

∀i, j ∈ N. The relation, in fact forms an equivalence re-

lation. The equivalence class of an element (fi, Ai)i∈N ∈

Pcm w.r.t. ∼ is denoted by [fi, Ai]. The space Pcm/∼

of equivalence classes becomes a vector space via the

well-defined operations

[fi, Ai]+[gj, Bj] := [fi+gj, Ai ∩Bj], λ[fi, Ai] := [λfi, Ai]

(18)

for ∀[fi, Ai], [gj, Bj] ∈ Pcm/∼ and λ ∈ R.



Now we define the space SF(M ;m) ⊂ L∞(M ;m) of

simple functions, i.e., each element h ∈ SF(M ;m) at-

tains only a finite number values. For [fi, Ai] ∈ Pcm/∼

and h =
∑`

j=1 aj1Bj ∈ SF(M ;m) with a Borel partition

(Bj) of M , we define the product h[fi, Ai] ∈ Pcm/∼

as
h[fi, Ai] := [ajfi, Ai ∩Bj], (19)

where we set Bj := ∅ and aj := 0 for ∀j > `. The defi-

nition is well-posed and that the resulting multiplication

is a bilinear map from SF(M ;m)×Pcm/∼ into Pcm/∼



s.t. for ∀[fi, Ai] ∈ Pcm/∼ and every h, k ∈ SF(M ;m)

(hk)[fi, Ai] = h(k[fi, Ai]), 1[fi, Ai] = [fi, Ai].

(20)

Moreover, the map ∥ · ∥L2(T ∗M) : Pcm/∼→ [0,+∞[

given by

∥[fi, Ai]∥2
L2(T ∗M) :=

∑
i∈N

∫
Ai

Γ(fi)dm < ∞

constitutes a norm on Pcm/∼.



Def 9.6 (Cotangent module)

We define the Banach space (L2(T ∗M), ∥ · ∥L2(T ∗M)) as

the completion of (Pcm/∼, ∥ · ∥L2(T ∗M)). L
2(T ∗M) is

called cotangent module, and the elements of L2(T ∗M)

are called (differential) 1-forms.

Thm 9.1 (Module property) L2(T ∗M) is anL2-normedL∞-

module over M w.r.t. m whose point-wise norm | · |m satisfies,

for ∀[fi, Ai] ∈ Pcm/∼,

|[fi, Ai]|m =
∑
i∈N

1AiΓ(fi)
1
2 m-a.e. (21)



Def 9.7 (L2-differential) The L2-differential df of any

function f ∈ D(E)e is defined by

df := [f,X] ∈ L2(T ∗M),

where [f,X] ∈ Pcm/∼ ⊂ L2(T ∗M) is the represen-

tative of the sequence (fi, Ai)i∈N given by fi := f ,

A1 := X, fi := 0 and Ai := ∅ for ∀i ≥ 2.

As usual, we call a 1-form ω ∈ L2(T ∗M) exact if, for

some f ∈ D(E)e,

ω = df.



The L2-differential d is a linear operator on D(E)e. By

(21), the L∞-module structure induced by m according

to Theorem 9.1,

|df |m = Γ(f)
1
2 m-a.e.

holds for ∀f ∈ D(E)e.

Def 9.8 (Tangent module) The tangent module

(L2(TM), ∥ · ∥L2(TM)) or simply L2(TM) is

L2(TM) := L2(T ∗M)∗

and it is endowed with the norm ∥ · ∥L2(TM).



The elements of L2(TM) will be called vector fields.

As before, the point-wise pairing between ω ∈ L2(T ∗M)

and X ∈ L2(TM) is denoted by ω(X) ∈ L1(M ;m),

and, by a slight abuse of notation, |X| ∈ L2(M ;m)

denotes the point-wise norm of M . By Braun (’22+)

L2(TM) is a separable Hilbert module. Furthermore, in

terms of the point-wise scalar product ⟨·, ·⟩ on L2(T ∗M)

and L2(TM), respectively.



We can define the (Riesz) musical isomorphisms ] :

L2(T ∗M) → L2(TM) and [ := ]−1 defined by

⟨ω], X⟩ := ω(X) =: ⟨X[, ω⟩ m-a.e. (22)

Def 9.9 (L2-gradient) The L2-gradient ∇f of a function

f ∈ D(E)e is defined by

∇f := (df)].

Observe from (22) that f ∈ D(E)e, is characterized as

the unique element X ∈ L2(TM) which satisfies

df(X) = |df |2 = |X|2 m-a.e.



Def 9.10 (Test(TM) and Reg(TM))

Test(TM) =

{
n∑
i=1

gi∇fi

∣∣∣∣∣ n ∈ N, fi, gi ∈ Test(M)

}
,

Reg(TM) =

{
n∑
i=1

gi∇fi

∣∣∣∣∣ n ∈ N, fi, gi ∈ Test(M) ∪ R1M

}
.

Def 9.11 (Test(T ∗M) and Reg(T ∗M))

Test(T ∗M) =

{
n∑
i=1

gidfi

∣∣∣∣∣ n ∈ N, fi, gi ∈ Test(M)

}
,

Reg(T ∗M) =

{
n∑
i=1

gidfi

∣∣∣∣∣ n ∈ N, fi, gi ∈ Test(M) ∪ R1M

}
.



Test(TM) ↪→ Lp(TM) (resp. Test(T ∗M) ↪→ Lp(T ∗M))

for p ∈ [1,+∞[, henceReg(TM)∩Lp(TM) ↪→ Lp(TM)

(resp. Reg(T ∗M)∩Lp(T ∗M) ↪→ Lp(T ∗M)). From this,

L2(TM) ∩ Lp(TM) ↪→ Lp(TM) (resp. L2(T ∗M) ∩

Lp(T ∗M) ↪→ Lp(T ∗M)) for p ∈ [1,+∞[.

We define

L2((T ∗)⊗2M) := L2(T ∗M) ⊗ L2(T ∗M),

L2((T )⊗2M) := L2(TM) ⊗ L2(TM).



They are point-wise isometrically module isomorphic: the

respective pairing is initially defined by

(ω1 ⊗ ω2)(X1 ⊗X2) := ω1(X1)ω2(X2) m-a.e.

for ω1, ω2 ∈ L2(T ∗M)∩L∞(T ∗M) andX1, X2 ∈ L2(TM)∩

L∞(TM), and is extended by linearity and continuity

to L2((T ∗)⊗2M) and L2((T )⊗2M), respectively. By a

slight abuse of notation, this pairing induces the (Riesz)

musical isomorphisms [ : L2((T )⊗2M) → L2((T ∗)⊗2M)



and ] := [−1 given by

⟨A] | T ⟩m := A(T ) =: ⟨A | T [⟩m m-a.e. (23)

and write |A|HS :=
√
⟨A |A⟩m and |T |HS :=

√
⟨T | T ⟩m

for A ∈ L2((T ∗)⊗2M) and T ∈ L2((T )⊗2M).

Given any k ∈ N ∪ {0}, we set

L2(ΛT ∗M) : = ΛL2(T ∗M),

L2(ΛTM) : = ΛL2(TM).

L2(Λ1T ∗M) = L2(T ∗M), L2(Λ1TM) = L2(TM),

L2(Λ0T ∗M) = L2(Λ0TM) = L2(M ;m).



These are naturally Hilbert modules. L2(ΛT ∗M) and

L2(ΛTM) are pointwise isometrically module isomor-

phic. For brevity, the induced pointwise pairing between

ω ∈ L2(ΛT ∗M) and X1 ∧X1 ∈ L2(ΛTM) with X1 ∈

L2(TM) ∩ L∞(TM), is written by

ω(X1, X1) := ω(X1 ∧X1).

Test(ΛT ∗M) : =

{
n∑
i=1

f0
i df

1
i ∧ · · · ∧ dfi

∣∣∣∣∣ n ∈ N,

f ji ∈ Test(M) for 0 ≤ j ≤ k

}
,



Test(ΛTM) : =

{
n∑
i=1

f0
i∇f

1
i ∧ · · · ∧ ∇fi

∣∣∣∣∣ n ∈ N,

f ji ∈ Test(M) for 0 ≤ j ≤ k

}
,

Reg(ΛT ∗M) : =

{
n∑
i=1

f0
i df

1
i ∧ · · · ∧ dfi

∣∣∣∣∣ n ∈ N,

f ji ∈ Test(M) for 1 ≤ j ≤ k, f0
i ∈ Test(M) ∪ R1M

}
,

Reg(ΛTM) : =

{
n∑
i=1

f0
i df

1
i ∧ · · · ∧ dfi

∣∣∣∣∣ n ∈ N,

f ji ∈ Test(M) for 1 ≤ j ≤ k, f0
i ∈ Test(M) ∪ R1M

}
.



Def 9.12 ((1, 2)-Sobolev space W 1,2(TM))

The space W 1,2(TM) is defined to consist of all X ∈

L2(TM) for which ∃T ∈ L2(T⊗2M) s.t. for ∀g1, g2, h ∈

Test(M),∫
M

h⟨T |∇g1 ⊗ ∇g2⟩dm

=−
∫
M

⟨X,∇g2⟩div(h∇g1)dm−
∫
M

hHess g2(X,∇g1)dm.

Here Hess g2 ∈ L2((T ∗)⊗2M) is the Hessian defined for

g2 ∈ Test(M). The element T is unique, denoted by

∇X and called the covariant derivative of M .



The spaceW 1,2(TM) endowed with the norm ∥·∥W 1,2(M)

is given by

∥X∥2
W 1,2(TM) := ∥X∥2

L2(TM) + ∥∇X∥2
L2(T⊗2M).

We also define the covariant functional Ecov : L2(TM) →

[0,+∞[ by

Ecov(X) :=


∫
M

|∇X|2HSdm X ∈ W 1,2(TM),

∞ otherwise.
(24)



It is proved in Braun (’22+) that (W 1,2(TM), ∥·∥W 1,2(TM))

is a separable Hilbert space, ∇ is a closed operator,

Reg(TM) ⊂ W 1,2(TM),W 1,2(TM) ↪→ L2(TM), and

lsc of Ecov : L2(TM) → [0,+∞[.

Def 9.13 ((1, 2)-Sobolev space H1,2(TM)) We define the

space H1,2(TM) ⊂ W 1,2(TM) as the ∥ · ∥W 12,(TM)-

closure of Reg(TM):

H1,2(TM) := Reg(TM)
∥·∥

W1,2(TM).

H1,2(TM) is in general a strict subset of W 1,2(TM).



Lem 9.1 (Kato’s inequality,Braun (’22+) ) For ∀X ∈ H1,2(TM),

|X| ∈ D(E) and

|∇|X|| ≤ |∇X|HS m-a.e.

If X ∈ H1,2(TM) ∩ L∞(M ;m), then |X|2 ∈ D(E).

Def 9.14 (Bochner Laplacian) We defineD(□B) to con-

sist of all X ∈ H1,2(TM) for which ∃Z ∈ L2(TM) s.t.

for ∀Y ∈ H1,2(TM),∫
M

⟨Y, Z⟩dm = −
∫
M

⟨∇Y |∇X⟩dm.



In case of existence, Z is uniquely determined, denoted

by □BX and called the Bochner Laplacian (or connection

Laplacian or horizontal Laplacian) of M .

observe that D(□B) is a vector space, and that □B :

D(□B) → L2(TM) is a linear operator. Both are easy

to see from the linearity of the covariant derivative.

We modify the functional from (24) with the domain

W 1,2(TM) by introducing the “augmented” covariant



energy functional Ẽcov : L2(TM) → [0,+∞] with

Ẽcov(X) :=


∫
M

|∇X|2HSdm X ∈ H1,2(TM),

∞ otherwise.

Clearly, its (non-relabeled) polarization Ẽcov : H1,2(TM)2 →

R is a closed, symmetric form, and □B is the non-positive,

self-adjoint generator uniquely associated to it. We write

EB instead of Ẽcov. Let (PB
t )t≥0 be the heat semigroup

on L2(TM) formally written by

“PB
t := et□

B
”.



For α > 0 & X ∈ L2(TM), RB
αX :=

∫∞
0 e−αtPB

t Xdt.

Lem 9.2 (Braun (’22+)) We have the following:

(1) 0 ≤ inf σ(−∆) ≤ inf σ(−□B).

(2) For ∀X ∈ L2(TM) and every t ≥ 0,

|PB
t X| ≤ Pt|X| m-a.e. (25)

Cor 9.1 (Braun (’22+)) Suppose p ∈ [1,+∞[. Then the

heat flow (PB
t )t≥0 can be extended to a contractive semigroup

on Lp(TM), which is strongly continuous on Lp(TM) under

p ∈ [1,+∞[ and weakly* continuous on L∞(TM).



Given ω ∈ L0(ΛT ∗M) andX0, · · · , Xk, Y ∈ L0(TM),

we use the standard abbreviations: for 1 ≤ i < j ≤ k

ω(X̂i) : = ω(X0, · · · , X̂i, · · · , Xk),

: = ω(X0 ∧ · · · ∧Xi−1 ∧Xi+1 ∧ · · · ∧Xk),

ω(Y, X̂i, Ŷj) : = ω(Y,X0, · · · , X̂i, · · · , X̂j, · · · , Xk),

: = ω(Y ∧X0 ∧ · · · ∧Xi−1 ∧Xi+1

∧ · · · ∧ Yj−1 ∧ Yj+1 ∧ · · · ∧Xk).



Def 9.15 (Sobolev space D(d))

D(d): The set of all ω ∈ L2(ΛT ∗M) for which ∃η ∈

L2(Λk+1T ∗M) s.t. for ∀X0, · · · , Xk ∈ Test(M),∫
M

η(X0, · · · , Xk)dm =

∫
M

1∑
i=0

(−1)i+1ω(X̂i)divXidm

+

∫
M

1∑
i=0

1∑
j=i+1

(−1)i+jω([Xi, Xj], X̂i, X̂j)dm.

In case of existence, the element η is unique, denoted

by dω and called the exterior derivative (or exterior dif-

ferential) of ω.



We always endow D(d) with the norm ∥ · ∥D(d) given by

∥ω∥2
D(d) := ∥ω∥2

L2(ΛT ∗M) + ∥dω∥2
L2(ΛT ∗M).

We introduce the functional Ed : L2(ΛT ∗M) → [0,+∞]

with

Ed(ω) :=


∫
M

|dω|2dm ω ∈ D(d),

∞ otherwise.

We do not make explicit the dependency of Ed on the

degree k. It will always be clear from the context which

one is intended.



It is proved in Braun (’22+) that (D(d), ∥ · ∥D(d)) is a

separable Hilbert space, the exterior differential d is a

closed operator, Reg(ΛT ∗M) ⊂ D(d), D(d) is dense

in L2(ΛT ∗M), and the functional Ed : L2(ΛT ∗M) →

[0,+∞] is lower semi continuous.

Def 9.16 (The space Dreg(d)) We define the spaceDreg(d) ⊂

D(d) by the closure of Reg(ΛT ∗M) w.r.t. the norm

∥ · ∥D(d):

Dreg(d) := Reg(ΛT ∗M)
∥·∥D(d).



It is proved in Braun (’22+) that for ∀ω ∈ Dreg(d), we

have dω ∈ Dreg(d
k+1) with d(dω) = 0.

Def 9.17 (The space D(d∗)) D(d∗): The set of all ω ∈

L2(ΛT ∗M) for which ∃ρ ∈ L2(T ∗M) s.t. for ∀η ∈

Test(T ∗M), we have∫
M

⟨ρ, η⟩ dm =

∫
M

⟨ω, dη⟩ dm.

If it exists, ρ is unique, denoted by d∗ω and called the

codifferential of ω. We simply defineD(d0
∗) := L0(M ;m)

and d∗ := 0 on this space.



Def 9.18 (The space W 1,2(ΛT ∗M)) Define the spaceW 1,2(ΛT ∗M)

by W 1,2(ΛT ∗M) := D(d) ∩ D(d∗). By Braun (’22+),

we already know that W 1,2(ΛT ∗M) is a dense subspace

of L2(ΛT ∗M).

We endowW 1,2(ΛT ∗M) with the norm ∥·∥W 1,2(ΛT ∗M)

given by

∥ω∥2
W 1,2(ΛT ∗M) : = ∥ω∥2

L2(ΛT ∗M) + ∥dω∥2
L2(Λk+1T ∗M)

+ ∥d∗ω∥2
L2(T ∗M)



and we define the contravariant functional

Econ : L2(ΛT ∗M) → [0,+∞] by

Econ(ω) :=


∫
M

[
|dω|2 + |d∗ω|2

]
dm ω ∈ W 1,2(ΛT ∗M)

∞ otherwise.

Arguing as for Braun (’22+), W 1,2(ΛT ∗M) becomes a

separable Hilbert space w.r.t. ∥ · ∥W 1,2(ΛT ∗M). Moreover,

the functional Econ : L2(ΛT ∗M) → [0,+∞] is clearly

lower semi continuous.

By Braun (’22+), Reg(ΛT ∗M) ⊂ W 1,2(ΛT ∗M), so

that the following definition makes sense.



Def 9.19 (The space H1,2(ΛT ∗M))

The space H1,2(ΛT ∗M) ⊂ W 1,2(ΛT ∗M) is defined by

the closure of Reg(ΛT ∗M) w.r.t. ∥ · ∥W 1,2(ΛT ∗M):

H1,2(ΛT ∗M) := Reg(ΛT ∗M)
∥·∥

W1,2(ΛT∗M).

Def 9.20 (L2-Hodge-Kodaira Laplacian ∆∆HK) The space

D(∆∆HK) is defined to consist of all ω ∈ H1,2(ΛT ∗M)

for which ∃α ∈ L2(ΛT ∗M) s.t. for ∀η ∈ H1,2(ΛT ∗M),∫
M

⟨α, η⟩dm = −
∫
M

[⟨dω, dη⟩ + ⟨d∗ω, d∗η⟩] dm.

In case of existence, the element α is unique, denoted by



∆∆HKω and called the Hodge Laplacian, Hodge-Kodaira

Laplacian or Hodge-deRham Laplacian of ω. Formally

∆∆HKω can be written “∆∆HKω = −(dd∗ + d∗d)ω”.

For the most important case k = 1, we write ∆∆HK

instead of ∆∆HK
1 . We see ∆∆HK

0 = ∆ the usual L2-

generator associated to the given quasi-regular strongly

local Dirichlet form (E, D(E)). Moreover, the Hodge-

Kodaira Laplacian ∆∆HK is a closed operator.



We define the heat flow PHK
t on 1-forms associated to

the functional Ẽcon : L2(T ∗M) → [0,+∞] with

Ẽcon(ω) :=


∫
M

[
|dω|2 + |d∗ω|2

]
dm ω ∈ H1,2(T ∗M),

∞ otherwise.

We write EHK instead of Ẽcon. Let (PHK
t )t≥0 be the heat

semigroup of bounded linear and self-adjoint operator on

L2(T ∗M) formally written by

“PHK
t := et∆∆

HK
”.

The following are important:



Lem 9.3 (Braun (’22+)) We have the following:

(1) For ∀f ∈ D(E) and every t > 0, dPtf ∈ D(∆∆HK) and

PHK
t df = dPtf. (26)

(2) If ω ∈ D(d∗) and t > 0, then PHK
t ω ∈ D(d∗) and

d∗P
HK
t ω = Ptd∗ω. (27)

(3) inf σ(−∆κ) ≤ inf σ(−∆∆HK).

The formulas (26) and (27) are called intertwining proper-

ties, which play a crucial role to prove the Lp-boundedness

of Riesz operator.
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Two papers, two talks

1 Foundations of the wald space for phylogenetic trees,
Arχiv, 2022

2 Information geometry for phylogenetic trees,
Journal of Mathematical Biology, 2021

1 Stephan: definition and properties of wald space

2 Me: why wald space? where does the metric come from?
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Phylogenetic trees

Evolutionary trees are constructed from genetic data

Very typically a collection of trees is obtained: Bayesian
posteriors, bootstrap samples, gene trees
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Ambient metrics

Suppose (X , d) is a metric space and Y ⊂ X

Example: consider S2 ⊂ R3

x

y

Standard Euclidean metric on R3 restricts to give the chordal
metric on S2

Call metric on Y ⊂ X an ambient metric

The origin of wald space



Induced intrinsic metric

Measure path length in Y infinitesimally with ambient metric

Define new metric on Y as infimum of path length between
points

x

y

Call this the intrinsic metric induced by d

The origin of wald space



Notation

Phylogenetic tree = a connected acyclic graph with no degree
2 vertices

Leaves are labelled 1, . . . ,N and root 0

Edge weighted – each edge has weight in R>0

Each tree contains at most 2N edges

0

1 2 3 4

0

1 2 3 4
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Metrics between trees

BHV tree space

Trees ↪→ R2N−2 intrinsic metric induced by Eucl. metric

Beautiful CAT(0) geometry, but. . .

Treats trees as geometrical / combinatorial objects

Alternatively

Forests ↪→ distributions on {0, 1}N

Wald space

Forests ↪→ S+(N) intrinsic metric induced by A.I. metric

The origin of wald space



Metrics between trees

BHV tree space

Trees ↪→ R2N−2 intrinsic metric induced by Eucl. metric

Beautiful CAT(0) geometry, but. . .

Treats trees as geometrical / combinatorial objects

Alternatively

Forests ↪→ distributions on {0, 1}N

Wald space

Forests ↪→ S+(N) intrinsic metric induced by A.I. metric

The origin of wald space



Metrics between trees

BHV tree space

Trees ↪→ R2N−2 intrinsic metric induced by Eucl. metric

Beautiful CAT(0) geometry, but. . .

Treats trees as geometrical / combinatorial objects

Alternatively

Forests ↪→ distributions on {0, 1}N

Wald space

Forests ↪→ S+(N) intrinsic metric induced by A.I. metric

The origin of wald space



Markov substitution models

Suppose we have a tree T and an alphabet Ω = {A,C ,G ,T}
Model how each letter in the genome of the species at the
root evolves over the tree via a continuous time Markov
process with state space Ω

Tree induces distribution of letters at the leaves
i.e. distribution on ΩN

Use to infer phylogenies from genetic sequence data

Bayes theorem:

Pr(T | gene sequence data) ∝ Pr(gene sequence data | T )Pr(T )

The origin of wald space



Two state symmetric model

Take Ω = {0, 1} and let X (t) random variable at t ∈ T

If t1, t2 ∈ T are path-length ℓ apart

Pr(X (t2) = X (t1)) =
1

2

(
1 + e−ℓ

)
Pr(X (t2) ̸= X (t1)) =

1

2

(
1− e−ℓ

)
If X1, . . . ,XN are the random variables at the leaves then

Cov (Xi ,Xj) =
1

4
exp(−ℓij)

where ℓij is the path length between leaves i and j
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Embedding trees in a space of distributions

Given a tree T , the substitution model induces a distribution
on letters X1, . . . ,XN at the leaves

Let D(ΩN) denote distributions on ΩN

Let pT (s) denote probability mass function associated with
tree T , s ∈ ΩN

For two state symmetric model T 7→ D(ΩN) is injective

Previous work

Kim (2001): ‘Slicing hyperdimensional oranges’

Moulton and Steel (2004): the edge-product space

◦ Considered topology of space of tree-like Markov models
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Ambient information metrics

Any metric dam on D(ΩN) pulls back to give a metric
between trees

d(T1,T2) = dam(pT1 , pT2)

Choice of metric on D(ΩN)

◦ Jenson-Shannon, Hellinger, (Kullback-Leibler divergence)

E.g. Hellinger distance between p, q ∈ D(ΩN)

dH(p, q)
2 =

1

2

∑
s∈ΩN

(√
p(s)−

√
q(s)

)2
.
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Scaling trees
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JS distance
BHV metric

Pick two random trees and scale all edges by α > 0

As α → ∞, d(T1,T2) → 0
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Trees and forests

Letters at leaves separated by infinitely long edges are
independent

Any tree T containing k infinitely long edges can be broken
up into a forest F = T1 ∪ · · · ∪ Tk+1

Distribution associated to F is

pF =
k+1∏
i=1

pTi

Remark: By expanding all edges to infinite length, obtain the
forest of N isolated vertices
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Fisher information geometry for symmetric 2-state model

Fix an unweighted binary tree (a tree topology)

Phylogenies with this topology are parametrized by ℓ ∈ R2N−1
>0

Equip R2N−1
>0 with the Fisher information metric

gij(ℓ) =
∑

s∈{0,1}N
pℓ(s)

[
∂

∂ℓi
log pℓ(s)

] [
∂

∂ℓj
log pℓ(s)

]

where pℓ(s) is the probability mass function on {0, 1}N
associated with the tree with edge lengths ℓ

Gives R2N−1
>0 the structure of a Riemannian manifold

Solve the geodesic equation for the Riemannian metric
numerically
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Why the Fisher information metric?

Lemma

Consider a small perturbation δℓ = (δℓ1, . . . , δℓ2N) of the edge
lengths of a tree (τ, ℓ).
Then (using Einstein summation notation)

1

2
δℓigij(ℓ)δℓ

j ≃ dambient(pℓ, pℓ+δℓ).

i.e. the norm of the perturbation, as measured with respect to the
Riemannian inner product, is proportional to the ambient metric

The origin of wald space



Information geodesics in an orthant for N = 4
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Plots substantially different from equivalent for BHV

Unshown: pendant edge lengths change non-trivially

The origin of wald space



A continuous Markov model

Problems:

1 Geodesics expensive to compute – sum over ΩN

2 What about geodesics between trees with different topologies?

Solution: consider Gaussian process Z (t), t ∈ T , which
approximates 2-state symmetric process

Z (t2) | Z (t1) = z ∼ N(ze−ℓt1t2 , 1− e−2ℓt1t2 )

where ℓt1t2 is path-length between t1, t2 ∈ T

The origin of wald space



Induced distribution pT on ΩN = RN is N(0,Σ) where

Cov (Zi ,Zj) = Σij = exp(−ℓij)

and ℓij is path length between leaves i , j on T

Correlation matrix Σ matches that for 2-state symmetric
model on T , and can be shown to be strictly positive definite

In the Fisher information matrix, summation over ΩN is
replaced by tractable integrals

This is the well-known affine invariant geometry on symmetric
positive definite matrices

The origin of wald space



Comparison of geodesics for discrete and continuous
models
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The origin of wald space

1 Aim to construct a geometry for phylogenetic trees by
regarding them as probability models for genetic sequences

2 Calculation and properties of ambient information metrics

3 Induced intrinsic metric given by the Fisher information
Riemannian metric

4 Replace Ω = {0, 1} with Ω = R and use Gaussian process on
each tree T

◦ Distribution pT is multivariate normal N(0,Σ)

◦ Sums over ΩN replaced with tractable integrals

◦ This is the affine invariant geometry on symmetric
positive definite N × N matrices Σ

The origin of wald space
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Outline of the talk

As a generalization of the successful theory of convex
optimization in CAT(0)-spaces, we consider (geodesic)
Gromov hyperbolic spaces.

1 Background
2 Gromov hyperbolic spaces
3 Contraction estimates
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§1 Background

§1 Background

Motivating question
Convex optimization (analysis of gradient flows for
convex functions) in CAT(0)-spaces made remarkable
progress since the mid-1990s.
(Jost, Mayer, Ambrosio–Gigli–Savaré, Bačák, etc.)

Can one generalize to some non-Riemannian spaces?
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§1 Background

CAT(0)-spaces

A metric space (X, d) is a CAT(0)-space if
1 geodesic, i.e., ∀x, y ∈ X, ∃γ : [0, 1] −→ X (minimal

geodesic) s.t.

γ(0) = x, γ(1) = y, d
(
γ(s), γ(t)

)
= |t − s|d(x, y).

2 ∀x, y, z ∈ X, ∀min. geod. γ : [0, 1] −→ X from y to z,
d2(x, γ(t)

) ≤ (1− t)d2(x, y
)
+ td2(x, z

)− (1− t)td2(y, z).

The latter condition means that [d2(x, γ(·))]′′ ≥ 2d2(y, z),
thus Hess[d2] ≥ 2, in the weak sense (along geodesics).
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§1 Background

CAT(0) is
a synthetic notion of nonpositive curvature:
A complete, simply connected Riemannian
manifold is CAT(0) iff its sectional curvature is ≤ 0.

a “Riemannian” condition:
Among Banach spaces, only Hilbert spaces are
CAT(0). In particular, non-Riemannian Finsler
manifolds cannot be CAT(0).
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§1 Background

Gradient flows

As usual, we employ the proximal operator constructing
discrete-time gradient curves:

Resolvent/Proximal operator
(X, d): a metric space, f : X −→ R, τ > 0, x ∈ X:

J f
τ (x) := arg min

y∈X

{
f (y) +

d2(x, y)
2τ

}
.

! The iteration [J f
t/k]

k(x) converges to a gradient curve
ξ(t) for f as k → ∞.
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§1 Background

Contraction property

The convexity of d2 & the Riemannian property are
essential in the theory of gradient flows in CAT(0)-sp.’s.
Let (X, d) be CAT(0) and f be K-convex (K ∈ R), i.e.,

f
(
γ(t)

) ≤ (1− t) f
(
γ(0)

)
+ t f

(
γ(1)

)− K
2

(1− t)td2(γ(0), γ(1)
)

∀min. geod. γ : [0, 1] −→ X, ∀t ∈ (0, 1).

Contraction property
For any gradient curves ξ and ζ for f ,

d
(
ξ(t), ζ(t)

) ≤ e−Ktd
(
ξ(0), ζ(0)

) ∀t > 0.
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§1 Background

The contraction property was generalized to:

CAT(1)-spaces
(metric spaces of sectional curvature ≤ 1)

Alexandrov spaces
(metric spaces of sectional curvature bounded below)

RCD(K,∞)-spaces
(metric measure spaces of Ricci curvature bounded below)

These are all Riemannian!!
(Non-Riemannian Finsler manifolds are excluded.)
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§1 Background

Finsler case?

In fact, contraction property fails for Finsler manifolds
and normed spaces (O.–Sturm 2012).

Open problem
Any weaker contraction property for convex functions
on Finsler manifolds or normed spaces?

As a class including some non-Riemannian Finsler
manifolds, we consider Gromov hyperbolic spaces.
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§2 Gromov hyperbolic spaces

§2 Gromov hyperbolic spaces

Let (X, d) be a metric space.

For x, y, z ∈ X, define the Gromov product:

(y|z)x :=
1
2
{
d(x, y) + d(x, z) − d(y, z)

} ≥ 0.

R2

x

y

z
(y|z)x

tree

(y|z)x
x

y

z
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§2 Gromov hyperbolic spaces

δ-hyperbolic spaces

(X, d) is δ-hyperbolic (δ ≥ 0) if

(x|z)p ≥ min
{
(x|y)p, (y|z)p

} − δ ∀p, x, y, z ∈ X.

(X, d) is Gromov hyperbolic if it is δ-hyperbolic ∃δ ≥ 0.

Equality holds with δ = 0 in trees. Thus, trees are
0-hyperbolic.

Roughly speaking, a δ-hyperbolic space is close to a
tree up to some “local” perturbations of scale ≤ δ.
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§2 Gromov hyperbolic spaces

Other examples
Complete, simply connected Riem. manifolds of
sect. curvature ≤ −1 are Gromov hyperbolic.

Metric spaces with diameter ≤ δ are δ-hyperbolic.

Hilbert geometry on a sufficiently smooth & convex
domain D ⊂ Rn is Gromov hyp. (Karlsson–Noskov
2002); it is non-Riemannian unless D is an ellipsoid.

We shall use the following two fundamental properties
of δ-hyperbolic spaces (compare them with triangles in
trees).

Shin-ichi OHTA (Osaka Univ./RIKEN AIP) Gradient flows in Gromov hyperbolic spaces 12/Oct/2023 (ENSAE, Paris) 12 / 21



§2 Gromov hyperbolic spaces

Lemma A (Tripod lemma)
Let γ, η : [0, 1] −→ X be geodesics emanating from the
same point x and put y = γ(1), z = η(1). Then, for any y′
on γ and z′ on η with d(x, y′) = d(x, z′) ≤ (y|z)x, we have

d(y′, z′) ≤ 4δ.

tree

x

y

z

(y|z)x

y′ = z′
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§2 Gromov hyperbolic spaces

Lemma B
Let γi be a geodesic from p to xi, i = 1, 2. Then, for yi on
γi s.t. mini=1,2 d(p, yi) ≥ (x1|x2)p − σ with σ ≥ 0, we have

|(x1|x2)p − (y1|y2)p| ≤ 6δ + σ.

tree

p

x1

x2

(x1|x2)p

= (y1|y2)p

y1
y2
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§3 Contraction estimates

§3 Contraction estimates

Setting
Let (X, d) be a proper (i.e., bounded closed sets are compact),
geodesic, δ-hyperbolic space, f : X −→ R be K-convex
(K ≥ 0). Moreover, assume that f is L-Lipschitz and
infX f is attained at some p ∈ X.

(K-convexity along geodesics seems a strong condition
! related to next talk)
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§3 Contraction estimates

Recall the resolvent/proximal operator:

J f
τ (x) := arg min

y∈X

{
f (y) +

d2(x, y)
2τ

}
, τ > 0.

Note that J f
τ (x) ! ∅ by the properness.

tree

p

x
y

If X is a tree, ∀y ∈ J f
τ (x),

d(p, y) = d(p, x) − d(x, y),
i.e., this algorithm (PPA)
goes straight to the
closest minimizer of f .
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§3 Contraction estimates

Because of inevitable local perturbations of scale ≤ δ,
the δ-hyperbolicity provides a meaningful information
only in a large scale. Thus we consider J f

τ with large τ
relative to δ (“giant steps”).

Our main results are the following contraction
estimates. (We use Lemma A/B to prove Theorem A/B,
respectively.)
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§3 Contraction estimates

Theorem A (Tendency towards a minimizer p)

In the setting above, ∀x ∈ X, ∀y ∈ J f
τ (x), we have

d(p, y) ≤ d(p, x) − d(x, y) +
4
√

2τLδ√
Kτ + 1

.

If K > 0 and τ > K−1, we further obtain

d(p, y) ≤ d(p, x) −
(
1 − 1

Kτ

)
f (x) − f (p)

L
+

4
√

2τLδ√
Kτ + 1

.

(If f (x) - f (p), then d(p, y) . d(p, x).)

Cf: The case of trees.
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§3 Contraction estimates

Theorem B (Contraction estimate)

Let x1, x2 ∈ X, yi ∈ J f
τ (xi) (i = 1, 2), d(p, y1) ≤ d(p, y2).

i If d(p, y1) ≥ (x1|x2)p, then we have

d(y1, y2) ≤ d(x1, x2) − d(x1, y1) − d(x2, y2)

+
8
√

2τLδ√
Kτ + 1

+ 12δ.

ii If d(p, y1) < (x1|x2)p, then we have

d(y1, y2) ≤ d(x1, x2) − (p|x2)x1 +C(K, L,D, τ, δ),
where D := max{d(p, x1), d(p, x2)} and
C(K, L,D, τ, δ) = OK,L,D,τ(δ1/4) as δ→ 0.
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§3 Contraction estimates

(i) y1, y2 do not reach the branching point.

p

x1

x2y1 y2

(ii) Essentially reduced to the 1D case (on p ∼ x2).

p

x1

x2y1
y2

(p|x2)x1
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Outline of the talk

As a generalization of the successful theory of
convex optimization in CAT(0)-spaces, we consider
(geodesic) Gromov hyperbolic spaces.
In this talk, we study barycenters of probability
measures.

1 Background
2 Barycenters
3 A law of large numbers
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§1 Background

§1 Background

The class of geodesically convex functions seems
restrictive, compared with the local flexibility of Gromov
hyperbolic spaces.

! We’d like to build the theory of “roughly convex”
functions on δ-hyperbolic spaces, including the
(squared) distance function.

! For this purpose, we first consider the case of
distance function, thus barycenters.
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§2 Barycenters

§2 Barycenters

Let (X, d) be a δ-hyperbolic space. Given a Borel
probability measure µ ∈ P2(X) on X of finite second
moment, define the variance of µ by

V(µ) := inf
x∈X

∫

X
d2(x, z) µ(dz) = inf

x∈X
W2

2 (δx, µ).

If x ∈ X attains the inf, we call it a barycenter of µ.
(Wp = Lp-Wasserstein distance on Pp(X).)

Since µ may not have any barycenter, we consider

B(µ, ε) :=
{
x ∈ X

∣∣∣W2
2 (δx, µ) ≤ V(µ) + ε

}
, ε ≥ 0.

Shin-ichi OHTA (Osaka Univ./RIKEN AIP) Barycenters in Gromov hyperbolic spaces 13/Oct/2023 (ENSAE, Paris) 4 / 1



§2 Barycenters

Remark (Extension to P1(X))
One can in fact discuss barycenters of µ ∈ P1(X) of
finite first moment, by considering

inf
x∈X

∫

X

{
d2(x, z) − d2(x0, z)

}
µ(dz)

for arbitrarily fixed x0 ∈ X (indep. of the choice of x0).

Shin-ichi OHTA (Osaka Univ./RIKEN AIP) Barycenters in Gromov hyperbolic spaces 13/Oct/2023 (ENSAE, Paris) 5 / 1



§2 Barycenters

Fact (CAT(0)-case)
In a complete CAT(0)-space, any µ ∈ P1(X) admits a
unique barycenter, denoted by βµ ∈ X.

In fact, ∀x, y ∈ X, the midpoint w of x and y satisfies (by
integrating the CAT(0)-inequality in µ)

W2
2 (δw, µ) ≤

1
2

W2
2 (δx, µ) +

1
2

W2
2 (δy, µ) −

1
4

d2(x, y).

! Any minimizing sequence of W2
2 (δ·, µ) is a Cauchy

sequence and converges to the unique barycenter.
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§2 Barycenters

Extending the CAT(0)-inequality with an additional term
depending on δ leads the following.

Proposition (Size of B(µ, ε))
Let (X, d) be a geodesic δ-hyperbolic space. For any
µ ∈ P1(X) and x, y ∈ B(µ, ε), we have

d(x, y) ≤ 2
√

2δ
{
W1(δx, µ) +W1(δy, µ)

}
+ 4δ2 + ε.

In particular, for ε = 0, we have

d(x, y) ≤ O
(√
δ
)
.
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§2 Barycenters

Wasserstein contraction property

Fact (CAT(0)-case)
In a complete CAT(0)-space, ∀µ, ν ∈ P1(X), we have

d(βµ, βν) ≤ W1(µ, ν).

In other words, the map

β :
(P1(X),W1

) −→ X, β(µ) := βµ,

is non-expanding (giving a “projection” from P1(X) to X;
clearly β(δx) = x).
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§2 Barycenters

Theorem (Wasserstein contraction)
Let (X, d) be a geodesic δ-hyperbolic space. For any
µ, ν ∈ P1(X), x ∈ B(µ, ε1) and y ∈ B(ν, ε2), we have

d(x, y) ≤ W1(µ, ν) + 8δ ∨
√

54D
√

D + δ
√
δ + 3(ε1 + ε2),

where D := diam(supp µ ∪ supp ν ∪ {x, y}) and
a ∨ b := max{a, b}.

In particular, for ε1 = ε2 = 0, we have

d(x, y) ≤ W1(µ, ν) + O
(
δ1/4
)
.
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§3 A law of large numbers

§3 A law of large numbers

How to approximate barycenters? In a complete
CAT(0)-space, Sturm established the following.

Sturm’s law of large numbers (2003)
Take µ ∈ P(X) with bounded support, and let (Zi)i≥1 be
a sequence of i.i.d. random variables with distribution µ.
We recursively choose

S 1 := Z1, S k := γ(k−1) (k ≥ 2),
where γ : [0, 1] −→ X is the min. geod. from S k−1 to Zk.
Then S k converges to βµ almost surely.
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§3 A law of large numbers

Note that the above recursive choice S k requires no
knowledge of the construction of barycenters.

Some generalizations
CAT(1)-spaces of diameter ≤ π/2 (O–Pálfia 2015),

CAT(1)-spaces of radii ≤ π/2 (Yokota 2018),

finite dimensional Alexandrov spaces of curvature
bounded below (O–Pálfia 2015).
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§3 A law of large numbers

In a geodesic δ-hyperbolic space (X, d), due to the local
flexibility, we fix a rate instead of k−1 going to 0.

Theorem (A law of large numbers): Setting
Take µ ∈ P(X) having a barycenter p ∈ X. Let (Zi)i≥1 be
a sequence of i.i.d. random variables with distribution µ.
Given τ > 0, take recursively

S 1 := Z1, S k := γ
(
2τ/(2τ + 1)

)
(k ≥ 1),

where γ : [0, 1] −→ X is a min. geod. from S k−1 to Zk.
Assume that supp µ, p and (S k)k≥1 are all included in a
bounded set Ω ⊂ X.
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§3 A law of large numbers

Theorem (A law of large numbers): Assertion
Then, ∀ε > 0, we have

E
[
d2(p, S k0)

] ≤ 8D2
Ωτ +C(DΩ, τ, δ)δ + ε

for some k0 < D2
Ω
/(τε), where DΩ := diam(Ω).

Hence, after enough iteration (sublinear in ε), S k likely
passes close to p, which makes it possible to restrict
the region we explore barycenters.

When we assume δ ≤ DΩ/2 and choose τ =
√
δ/DΩ,

we have
E
[
d2(p, S k0)

] ≤ ε + O
(√
δ
)
.
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§3 A law of large numbers

Deterministic approximation

A “deterministic” counterpart to the “stochastic” LLN:

Theorem (Deterministic approximation)
Let (zi)n

i=1 ⊂ X and p ∈ X be a minimizer of
∑n

i=1 d2(zi, ·).
For τ > 0 and an arbitrary initial point y0 ∈ X, we take

ykn+i := γ
(
2τ/(2τ + 1)

)
,

where γ : [0, 1] −→ X is a min. geod. from ykn+i−1 to zi.
Assume that {p, zi, ykn+i} is included in a bounded set Ω.
Then, ∀ε > 0, ∃k0 < d2(p, y0)/(2τε) such that

d2(p, yk0n) ≤ C(DΩ, τ, δ, n)(δ + τ) +
2ε
n
.
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§3 A law of large numbers

Further problems

Improvements by comparing the case of trees
(instead of CAT(0)-spaces as above)?

Introduce an appropriate class of “roughly convex”
functions on (possibly non-geodesic) δ-hyperbolic
spaces, including (squared) distance functions.

Study optimization (discrete-time gradient flows)
for functions in the above class, possibly with
random noise (a kind of simulated annealing).
! Any applications to optimization theory?

Any connections with geometric group theory?
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Gradient flows and calculus of variations in CAT(1)-spaces

Introduction

Introduction
Let (X , d) be a complete metric space. Consider a lower
semi-continuous (lsc) function φ : X −→ (−∞,∞] such that

D(φ) := X \ φ−1(∞) 6= ∅.
If X is Riemannian, a gradient curve ξ : [0,∞) −→ X of φ with
initial condition ξ(0) := x0 ∈ D(φ) is a solution of

ξ̇ = −∇φ(ξ).

We are interested in constructing gradient curves or finding
minimizers of φ. Classically, the first is related to the
Crandall-Liggett theory of contraction semigroups in Banach
spaces generated by monotone nonlinear operators. Secondly,
discrete approximations of gradient curves leads us to optimization
techniques, such as proximal point methods. All can be treated in
a unified manner as instances of (contractive) evolution systems in
Banach spaces.



Gradient flows and calculus of variations in CAT(1)-spaces

Introduction

Given x ∈ X and τ > 0, the Moreau–Yosida approximation is

φτ (x) := infz∈X

{
φ(z) + d2(x ,z)

2τ

}
and set

Jφτ (x) :=

{
z ∈ X

∣∣∣∣φ(z) +
d2(x , z)

2τ
= φτ (x)

}
.

For x ∈ D(φ) and z ∈ Jφτ (x) we have d2(x , z) ≤ 2τ{φ(x)− φ(z)}.
Assumption

(1) (coercivity) There exists τ∗(φ) ∈ (0,∞] such that

φτ (x) > −∞ and Jφτ (x) 6= ∅ for all x ∈ X and τ ∈ (0, τ∗(φ)).

(2) (compactness) For any Q ∈ R, bounded subsets of the
sub-level set {x ∈ X |φ(x) ≤ Q} are relatively compact in X .

Remark
If diamX <∞ and (2) holds, then the lsc of φ implies that every
sub-level set {x ∈ X |φ(x) ≤ Q} is (empty or) compact. Thus φ is
bounded below and we can take τ∗(φ) =∞.



Gradient flows and calculus of variations in CAT(1)-spaces

Introduction

To construct discrete approximations of gradient curves of φ, we
consider a partition of the interval [0,∞):

Pτ = {0 = t0
τ < t1

τ < · · · }, lim
k→∞

tkτ =∞,

and set

τk := tkτ − tk−1
τ for k ∈ N, |τ | := sup

k∈N
τk .

We will always assume |τ | < τ∗(φ). Given an initial point
x0 ∈ D(φ),

x0
τ := x0 and recursively choose arbitrary xkτ ∈ Jφτk (xk−1

τ ) for each k ∈ N.

We call {xkτ }k∈N a discrete solution of the variational scheme
associated with the partition Pτ , which is thought of as a
discrete-time gradient curve for the potential function φ.
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Convergence of discrete solutions

Convergence of discrete solutions
Let φ : (−∞,∞] −→ X be λ-convex for some λ ∈ R in the sense
that

φ
(
γ(t)

)
≤ (1− t)φ(x) + tφ(y)− λ

2
(1− t)td2(x , y)

for any x , y ∈ D(φ) and some minimal geodesic γ : [0, 1] −→ X
from x to y .
We remark that the compactness (2) in the Assumption implies
the coercivity in this case; we even have τ∗(φ) =∞ if λ ≥ 0).
Fix an initial point x0 ∈ D(φ). Take a sequence of partitions
{Pτi}i∈N such that limi→∞ |τi | = 0 and associated discrete
solutions {xkτi}k∈N with x0

τi
= x0. Under Assumption (2), by the

compactness argument, a subsequence of the interpolated curves

x̄τi (0) := x0, x̄τi (t) := xkτi for t ∈ (tk−1
τi

, tkτi ]

converges to a curve ξ : [0,∞) −→ D(φ) point-wise in t ∈ [0,∞).
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Convergence of discrete solutions

In general, under the coercivity and λ-convexity of φ (but without
the compactness), if a curve ξ is obtained as above (called a
generalized minimizing movement), then it is locally Lipschitz on
(0,∞) and satisfies limt↓0 ξ(t) = x0 as well as the energy
dissipation identity:

φ
(
ξ(T )

)
= φ

(
ξ(S)

)
− 1

2

∫ T

S
{|ξ̇|2 + |∇φ|2(ξ)} dt.

Here

|ξ̇|(t) := lim
s→t

d(ξ(s), ξ(t))

|t − s|
is the metric speed existing at almost all t, and

|∇φ|(x) := lim sup
y→x

max{φ(x)− φ(y), 0}
d(x , y)

is the (descending) local slope. We remark that |∇φ| is lower
semi-continuous and limi→∞ φ(x̄τi (t)) = φ(ξ(t)) for all t ≥ 0.
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CAT(1)-spaces
Given three points x , y , z ∈ X with
d(x , y) + d(y , z) + d(z , x) < 2π, we can take corresponding points
x̃ , ỹ , z̃ in the 2-dimensional unit sphere S2 such that

dS2(x̃ , ỹ) = d(x , y), dS2(ỹ , z̃) = d(y , z), dS2(z̃ , x̃) = d(z , x).

We call 4x̃ ỹ z̃ a comparison triangle of 4xyz in S2.

Definition (CAT(1)-spaces)

A geodesic metric space (X , d) is called a CAT(1)-space if, for any
x , y , z ∈ X with d(x , y) + d(y , z) + d(z , x) < 2π and any minimal
geodesic γ : [0, 1] −→ X from y to z , we have

d
(
x , γ(t)

)
≤ dS2

(
x̃ , γ̃(t)

)
at all t ∈ [0, 1], where 4x̃ ỹ z̃ ⊂ S2 is a comparison triangle of
4xyz and γ̃ : [0, 1] −→ S2 is the minimal geodesic from ỹ to z̃ .
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Convergence of discrete solutions

Lemma (Semi-convexity of distance functions)

Let (X , d) be a CAT(1)-space and take R ∈ (0, π). Then there
exists K = K (R) ∈ R such that the squared distance function
d2(x , ·) is K-convex on the open R-ball B(x ,R) for all x ∈ X.

We define the angle between two geodesics γ and η emanating

from γ(0) = η(0) = x by ∠x(γ, η) := lims,t↓0 ∠γ̃(s)x̃ η̃(t), where

∠γ̃(s)x̃ η̃(t) is the angle at x̃ of 4γ̃(s)x̃ η̃(t) in S2.

Theorem (First variation formula)

Let γ : [0, 1] −→ X be a geodesic from x to z, and take y ∈ X
with 0 < d(x , y) < π. Then we have

lim
s↓0

d(γ(s), y)− d(x , y)

s
= −d(x , z) cos∠x(γ, η),

where η : [0, 1]→ X is the unique minimal geodesic from x to y.
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Key lemma

Key lemma

Let (X , d) be a complete CAT(1)-space and φ : X −→ (−∞,∞]
satisfy the λ-convexity for some λ ∈ R and Assumption (1).

Lemma (Key lemma)

Let x ∈ D(φ) and τ ∈ (0,min{π2/(2C ), τ∗(φ)/8}) with

C = C (x , τ∗(φ), φ(x), τ∗(φ)/8).Take xτ ∈ Jφτ (x). Then we have,
for any y ∈ D(φ) ∩ B(xτ ,R − d(x , xτ )) with R < π and for
K = K (R),

d2(xτ , y) ≤ d2(x , y)− λτd2(xτ , y) + 2τ{φ(y)− φ(xτ )} − K

2
d2(x , xτ )

≤ d2(x , y)− λτd2(xτ , y) + 2τ{φ(y)− φ(xτ )}
+ max{0,−K} · τ{φ(x)− φ(xτ )}.
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proof of the Key lemma

We have d2(x , xτ ) ≤ 2Cτ < π2 by an a priori lemma of
Ambrosio-Gigli-Savaré and the choice of τ . Let γ : [0, 1] −→ X be
the minimal geodesic from xτ to y , and η : [0, 1] −→ X from xτ to

x . For any s ∈ (0, 1), by the definition of Jφτ (x) and the
λ-convexity of φ, we have

φ(xτ ) +
d2(x , xτ )

2τ
≤φ
(
γ(s)

)
+

d2(x , γ(s))

2τ

≤(1− s)φ(xτ ) + sφ(y)− λ

2
(1− s)sd2(xτ , y)

+
d2(x , γ(s))

2τ
.
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Key lemma

Hence

φ(xτ ) ≤ φ(y) +
1

2τ

d2(x , γ(s))− d2(x , xτ )

s
− λ

2
(1− s)d2(xτ , y).

Applying the first variation formula twice, we observe the
commutativity:

lim
s↓0

d2(x , γ(s))− d2(x , xτ )

s
= lim

t↓0

d2(η(t), y)− d2(xτ , y)

t
,

since both sides equal −2d(xτ , x)d(xτ , y) cos∠xτ (γ, η).
Notice that η is contained in B(y ,R) by the choice of y . Thus it
follows from the K -convexity of d2(·, y) in B(y ,R) that

lim
t↓0

d2(η(t), y)− d2(xτ , y)

t
≤ d2(x , y)− d2(xτ , y)− K

2
d2(x , xτ )

≤ d2(x , y)− d2(xτ , y) + max{0,−K} · τ{φ(x)− φ(xτ )}.

2
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Key lemma

Remark
(a) Used before by Mayer, Ambrosio-Gigli-Savaré and Bačák is the
direct application of the convexity of φ and d2(x , ·) along γ, which
implies in our setting

K

2
d2(xτ , y) ≤ d2(x , y)−λτd2(xτ , y)+2τ{φ(y)−φ(xτ )}−d2(x , xτ ).

This coincides with our estimate when K = 2. The commutativity
was used to move the coefficient K/2 from d2(xτ , y) to d2(x , xτ ).
(b) The Riemannian nature of the space (i.e., the angle) is
essential in the commutativity. In fact, on a Finsler manifold
(M,F ), commutativity (written using only the distance) implies

gv (v ,w) = gw (v ,w) for all v ,w ∈ TxM \ {0}, x ∈ M,

and the parallelogram identity on TxM and hence F is Riemannian.
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Applications to gradient flows

Our argument covers two cases. In both cases, (X , d) is complete,
φ : X −→ (−∞,∞] is lower semi-continuous, λ-convex and
D(φ) 6= ∅.

Case (I)

(X , d) is a CAT(1)-space.

Case (II)

(X , d) satisfies the commutativity and the K -convexity of the
squared distance function, and φ satisfies the coercivity condition
(Assumption (1)).

We stress that both λ,K ∈ R can be negative.
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Applications to gradient flows

Interpolations

Given an initial point x0 ∈ D(φ) and a partition Pτ with
|τ | < τ∗(φ), we fix a discrete solution {xkτ }k∈N. Let us also take a
point y ∈ X . We interpolate the discrete data xkτ , d(xkτ , y) and
φ(xkτ ) as follows:
For t ∈ (tk−1

τ , tkτ ], k ∈ N, define

x̄τ (t) := xkτ ∈ Jφτk (xk−1
τ ) (x̄τ (0) := x0),

d̄ τ (t; y) :=

{
d2(xk−1

τ , y) +
t − tk−1

τ

τk
{d2(xkτ , y)− d2(xk−1

τ , y)}
}1/2

,

φ̄τ (t) := φ(xk−1
τ ) +

t − tk−1
τ

τk
{φ(xkτ )− φ(xk−1

τ )}.

Recall that τk = tkτ − tk−1
τ and note that φ̄τ is non-increasing.
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Applications to gradient flows

Theorem (Discrete evolution variational inequality)

Assuming |τ | < τ∗(φ), we have

1

2

d

dt

[
d̄

2
τ (t; y)

]
+
λ

2
d2
(
x̄τ (t), y

)
+ φ̄τ (t)− φ(y) ≤ Rτ ,K (t)

for almost all t ∈ (0,T ) and all y ∈ D(φ), where for t ∈ (tk−1
τ , tkτ ]

Rτ ,K (t) :=

(
tkτ − t

τk
+

max{0,−K}
2

)
{φ(xk−1

τ )− φ(xkτ )}.



Gradient flows and calculus of variations in CAT(1)-spaces

Applications to gradient flows

Convergence of discrete solutions

Theorem (Unique limits of discrete solutions)

Fix an initial point x0 ∈ D(φ) and consider discrete solutions
{xkτi}k∈N with xkτi = x0 associated with a sequence of partitions
{Pτi}i∈N such that limi→∞ |τi | = 0. Then the interpolated curve
x̄τi : [0,∞) −→ X converges to a curve ξ : [0,∞) −→ X with
ξ(0) = x0 as i →∞ uniformly on each bounded interval [0,T ]. In
particular, the limit curve ξ is independent of the choice of the
sequence of partitions nor discrete solutions.

We can define the gradient flow operator

G : [0,∞)× D(φ) −→ D(φ) (4.1)

by G(t, x0) := ξ(t), where ξ : [0,∞) −→ X is the unique gradient
curve with ξ(0) = x0. Then the semigroup property holds:

G
(
t,G(s, x0)

)
= G(s + t, x0) for all s, t ≥ 0.
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Applications to gradient flows

Contraction property

Theorem (Contraction property)

Take x0, y0 ∈ D(φ) and put ξ(t) := G(t, x0) and ζ(t) := G(t, y0).
Then we have, for any t > 0,

d
(
ξ(t), ζ(t)

)
≤ e−λtd(x0, y0).

The contraction property allows us to take the continuous limit

G : [0,∞)× D(φ) −→ D(φ)

of the gradient flow operator, which again enjoys the semigroup
property as well as the contraction property.
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Applications to gradient flows

Evolution variational inequality

Theorem (Evolution variational inequality)

Take x0 ∈ D(φ) and put ξ(t) := G(t, x0). Then we have

lim sup
ε↓0

d2(ξ(t + ε), y)− d2(ξ(t), y)

2ε
+
λ

2
d2
(
ξ(t), y

)
+φ
(
ξ(t)

)
≤ φ(y)

for all y ∈ D(φ) and t > 0. In particular,

1

2

d

dt

[
d2
(
ξ(t), y

)]
+
λ

2
d2
(
ξ(t), y

)
+ φ

(
ξ(t)

)
≤ φ(y)

for all y ∈ D(φ) and almost all t > 0.
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Applications to gradient flows

Stationary points and large time behavior of the flow

Theorem
A point x0 ∈ D(φ) satisfies |∇φ|(x0) = 0 if and only if
G(t, x0) = x0 for all t > 0.

Theorem (Large time behavior)

Take x0 ∈ D(φ), put ξ(t) := G(t, x0) and assume
limt→∞ φ(ξ(t)) > −∞. Then we have limt→∞ |∇φ|(ξ(t)) = 0.

Corollary

Take x0 ∈ D(φ), put ξ(t) := G(t, x0) and assume that there is a
sequence {tn}n∈N such that limn→∞ tn =∞ and {ξ(tn)}n∈N
converges to a point x̄ . Then x̄ is a stationary point of φ and
limt→∞ φ(ξ(t)) = φ(x̄).
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A Trotter–Kato product formula

Assumption

Let (X , d) be a complete metric space in either Case (I) or
Case (II), and assume additionally D := diamX <∞. For
i = 1, 2, we consider lsc, λi -convex function φi : X −→ (−∞,∞]
(λi ∈ R) satisfying D(φ1) ∩ D(φ2) 6= ∅ and the compactness
(Assumption (2)).

Given z0 ∈ D(φ) = D(φ1)∩D(φ2) and a partition Pτ , we consider
the discrete variational schemes for φ1 and φ2 in turn, namely

z0
τ := z0, choose arbitrary ẑkτ ∈ Jφ1

τk
(zk−1

τ ) and zkτ ∈ Jφ2
τk

(ẑkτ ) for k ∈ N.

The Trotter–Kato product formula asserts that {zkτ }k≥0 converges
to the gradient curve of φ := φ1 + φ2 emanating from z0 in an
appropriate sense.
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A Trotter–Kato product formula

Assumption

Given z0 ∈ D(φ) and a partition Pτ , set

δkτ (z0) := max{0, φ2(ẑkτ )− φ2(zk−1
τ ), φ1(zkτ )− φ1(ẑkτ )}

for k ∈ N by suppressing the dependence on the choice of
{ẑkτ , zkτ }k∈N. Assume that, for any ε,T > 0, there is ∆T

ε (z0) <∞
such that

N∑
k=1

δkτ (z0) ≤ ∆T
ε (z0)

for any Pτ with |τ | < ε, N ∈ N with tNτ ≤ T , and for any
solution {ẑkτ , zkτ }k∈N. This in particular guarantees that ẑkτ ∈ D(φ)
and zkτ ∈ D(φ).
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A Trotter–Kato product formula

Introduce the interpolated curve z̄τ :

z̄τ (0) := z0, z̄τ (t) := zkτ for t ∈ (tk−1
τ , tkτ ].

Theorem (A Trotter–Kato product formula)

Let the above assumptions be satisfied. Given z0 ∈ D(φ), the
curve z̄τ converges to the gradient curve ξ := G(·, z0) of φ
(constructed in the previous section) as |τ | → 0 uniformly on each
bounded interval [0,T ].
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Nonsmooth convex optimization

Definition (Proximal Point Algorithm)

Let (X , d) be a complete Alexandrov space either with curvature
bounded above or below by κ, and G ⊂ X be a closed,
geodesically convex set satisfying the following:

(1) In the upper curvature bound case, diamG < π/(2
√
κ) if

κ > 0;

(2) In the lower curvature bound case, dimX <∞, ∂X = ∅, and
diamG <∞ if κ < 0. Also J fλ(x) := gexpx(λ∇(−f )(x)).

Let fi : G → (−∞,∞] be convex, lsc for i = 1, . . . , n. Set
f (x) :=

∑n
i=1 fi (x) and suppose it is proper. Take λk > 0 s.t.∑∞

k=0 λk = +∞,
∑∞

k=0 λ
2
k < +∞. Given x0 ∈ G and for each

k ≥ 0 and 1 ≤ i ≤ n, we set

xkn+i := J fiλk (xkn+i−1).
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Nonsmooth convex optimization

Theorem
Let (X , d), G ⊂ X, f =

∑n
i=1 fi and {λk}k≥0 be as above.

Assume further that X is locally compact, fi is L-Lipschitz for
some L ≥ 1 and all i , and that infG f is attained at some point.
Then xm converges to a minimizer of f in G as m→∞.

Proposition

Let (X , d), G ⊂ X, f =
∑n

i=1 fi be as above and further assume
that fi is L-Lipschitz, and that f is K-convex for some K > 0.
Take λk > 0 with λkK < 1, λk → 0 and

∑∞
k=0 λk = +∞, and

consider the sequence {xm}m≥0 generated by the above. Then xm
converges to the unique minimizer y ∈ G of f as m→∞.
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Nonsmooth convex optimization

An application: Sturm’s law of large numbers

Theorem (Sturm 2002, Annals of Prob.)

Let (X , d) be a CAT (0)-space and let P2(X ) denote the set of all
probability measures µ s.t.

∫
X d2(x , a)dµ(a) <∞. Let a#tb

denote the unique geodesic between a, b ∈ X. Then for µ ∈ P2(X )

Λ(µ) := argmin
x∈X

∫
X
d2(x , a)dµ(a)

exists and is unique. Moreover consider an i.i.d. sequence of
random variables {Yi}i∈N with law µ and define

S1 := Y1,

Sk+1 := Sk# 1
k+1

Yk+1.

Then Sk converges to Λ(µ) almost surely, if supp(µ) is bounded.
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Nonsmooth convex optimization

An application: Nodice theorem for the Karcher mean
A deterministic version of Sturm’s law (cf. also Holbrook 2012):

Theorem (Lim-Pálfia 2014, Bull. LMS)

Let (X , d) be a CAT (0)-space and let µ :=
∑n−1

i=0
1
nδai with

ai ∈ X. Consider the deterministic sequence {Sk}k∈N defined as
the inductive sequence of geometric means

S1 := a0,

Sk+1 := Sk# 1
k+1

ak

where k := k mod (n). Then Sk → Λ(µ) with rate
d(Sk ,Λ(µ)) = O(1/k).

The above along with Sturm’s slln even generalizes to CAT(κ)
spaces (Ohta-Pálfia 2015, Yokota 2018) and positive operators
(Lim-Pálfia 2020, 2021).
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Abstract law of large numbers

Let G ⊂ X be a closed, geodesically convex set. We assume that
(G , d) is separable. Consider the set of all lower semi-continuous,
convex functions f : G → (−∞,∞] not identically +∞, denoted
by F (G ). For K > 0, we denote by FK (G ) the subset of all lower
semi-continuous, K -convex functions f : G → (−∞,∞] not
identically +∞.
Denote by P(FK (G )) the set of all complete probability measures
on FK (G ) with σ-field generated by the topology of one-sided
uniform convergence, such that g(x) :=

∫
FK (G) f (x)dµ(f ) is lsc

(−∞,+∞]-valued K -convex and there exists x ∈ G so that
g(x) < +∞.



Gradient flows and calculus of variations in CAT(1)-spaces

Abstract law of large numbers

Definition (Variance)

We define the variance of µ ∈ P(FK (G )) by

var(µ) := inf
x∈G

∫
FK (G)

f (x)dµ(f ).

A fixed µ ∈ P(FK (G )) can be viewed as the distribution of an
FK (G )-valued random variable. Eϕ :=

∫
FK (G) ϕ(f )dµ(f )

Definition (Expectation)

Let µ ∈ P(FK (G )). We define the expectation of µ as

Eµ := argmin
x∈G

∫
FK (G)

f (x)dµ(f ),

which is indeed uniquely determined by the K -convexity of
g(x) =

∫
FK (G) f (x)dµ(f ).
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Abstract law of large numbers

The above is motivated by the definition of Sturm of the
expectation as Eν := argminx∈G

∫
G d(x , a)2dν(a) of a probability

measure ν supported over G .
Note that g(Eµ) = var(µ). Let Lx denote the evaluation operator
at x ∈ G defined as Lx f := f (x). Clearly Lx is a linear functional
on the cone FK (G ).

Proposition (Variance inequality)

Let µ ∈ P(FK (G )). Then, for all x ∈ G, we have

d(x ,Eµ)2 ≤ 2

K
E (Lx − LEµ) =

2

K

∫
FK (G)

[f (x)− f (Eµ)]dµ(f ).
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Abstract law of large numbers

Theorem (Law of large numbers)

Let (X , d) and G ⊂ X be as above. Fix µ ∈ P(FK (G )) supported
on L-Lipschitz functions and let {fk}k≥0 denote a sequence of i.i.d.
random variables taking values in FK (G ) with distribution µ. Take
a positive sequence {λk}k≥0 with λkK < 1, λk → 0 and∑∞

k=0 λk = +∞. Define the sequence Sk ∈ G recursively as

Sk+1 := J fkλk (Sk), k ≥ 0,

with an arbitrary starting point S0 ∈ G, assuming that Sk ∈ G for
all k ≥ 0 in the lower curvature bound case. Then Sk → Eµ
almost surely.
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Calculus of variations in CAT(1)

Calculus of variations in CAT(1)
Variational result for convex lsc potential functions: Kuwae-Shioya
2009, Bačák 2015 proves in CAT (0) spaces that continuity in
Mosco implies continuity of resolvent and thus continuity of
gradient flows.

Definition (Weak convergence)

xn converges weakly to x , if Pγ(xn)→ x for any geodesic
γ : [0, 1] 7→ X with γ(0) = x .

Weak convergence makes sense on geodesically convex sets in
CAT (1) and sequences included in convex balls have weak cluster
points.

Lemma (CAT(1) variant of Bačák’s Lemma)

Let (X , d) be a CAT(1) space. Let xn, x ∈ X such that
d(xn, x) < π/2 for all n ∈ N. Then xn → x if and only if xn

w→ x
and d(xn, y)→ d(x , y) for some y ∈ X such that d(x , y) < π/2.
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Calculus of variations in CAT(1)

Lemma
Let (X , d) be a CAT(1) space with diam(X ) < π. Then if (Ci )i∈I
is a non-increasing family of bounded closed convex sets in X for
an index set I , we have ∩i∈ICi 6= ∅.

Lemma
Let diam(X ) < π. Let f : X 7→ (−∞,∞] be a convex lsc function.
Then f is bounded below on bounded sets.

Theorem (Theorem 3.5., Kell 2014)

Let diam(X ) < π. Then closed convex sets are weakly closed.

Lemma (Proposition 3.8., Kell 2014)

Let diam(X ) < π. Let f : X 7→ (−∞,∞] be a quasiconvex lsc
function. Then f is weakly lsc. In particular x → d2(a, x) is weakly
lsc on Ba(π/2).
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Calculus of variations in CAT(1)

Theorem (Yokota’s Theorem A, 2016)

Let diam(X ) < π. There exists a jointly κ-convex lsc function
Φ : X × X → [0,∞) for some κ > 0.

Lemma (Ekeland principle, 1979)

Given x0 ∈ X and a lsc function f : X 7→ (−∞,∞] that is bounded
below, there exist α, β ≥ 0 such that for all x ∈ X

f (x) ≥ −αd(x , x0)− β.

Definition (Mosco convergence)

A sequence of lsc functions φn : X 7→ R said to converge to
φ : X 7→ R in the sense of Mosco if, for any x ∈ X , we have

(M1) f (x) ≤ lim infn→∞ fn(xn) whenever xn
w→ x ,

(M2) there exists an (yn) ⊆ X , such that yn → x and
fn(yn)→ f (x).
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Calculus of variations in CAT(1)

Mosco convergence implies uniform minimization

Proposition (Ekeland principle, bounded case)

Let diam(X ) < π. Given x0 ∈ X and a uniformly proper sequence
of lsc λ-convex functions fn : X 7→ (−∞,∞] that is Mosco
converging to f : X 7→ (−∞,∞], there exist α, β ≥ 0 such that

fn(x) ≥ −αd(x , x0)− β

for all x ∈ X and n ∈ N.

Theorem
Let diam(X ) < π and fn : X 7→ (−∞,∞] a uniformly proper
sequence of lsc λ-convex functions that is Mosco converging to
f : X 7→ (−∞,∞]. Then for any small enough τ > 0 and x ∈ D(f )

lim
n→∞

(fn)τ (x) = fτ (x), lim
n→∞

J fnτ (x) = J fτ (x). (a)
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Calculus of variations in CAT(1)

Remark
If J fτ (x) is not unique in the above Theorem, then it still follows
that all weak cluster points of J fnτ (x) are in fact strong cluster
points and are in J fτ (x).

Theorem
Let fn : X 7→ (−∞,∞] be a uniformly proper, uniformly lower
bounded sequence of lsc functions that is Mosco converging to
f : X 7→ (−∞,∞]. Then (a) holds for any small enough τ > 0 and
x ∈ D(f ).

Theorem
Let fn : X 7→ (−∞,∞] be a uniformly proper sequence of
L-Lipschitz functions that is Mosco converging to f : X 7→ R.
Then (a) holds for any small enough τ > 0.
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A simplicial complex is made of simplices
of various dimensions. Simplicial chains
are linear combinations of simplices. The
boundary of a simplex is a chain, whence
a linear map ∂ and its adjoint d , which
satisfy ∂ ◦ ∂ = 0 and d ◦ d = 0.

The homology (resp. cohomology) of the simplicial complex is Ker(∂)/Im(∂) (resp.
Ker(d)/Im(d).

Simplicial chains and cochains can be equipped with `p norms.

In general, a normed chain complex is a normed vector space B equipped with a linear
map d : B → B such that d ◦ d = 0.
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Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



A simplicial complex is made of simplices
of various dimensions. Simplicial chains
are linear combinations of simplices. The
boundary of a simplex is a chain, whence
a linear map ∂ and its adjoint d , which
satisfy ∂ ◦ ∂ = 0 and d ◦ d = 0.

The homology (resp. cohomology) of the simplicial complex is Ker(∂)/Im(∂) (resp.
Ker(d)/Im(d).

Simplicial chains and cochains can be equipped with `p norms.

In general, a normed chain complex is a normed vector space B equipped with a linear
map d : B → B such that d ◦ d = 0.
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When F : B1 → B2 is a linear bijection, the robustness of the resolution of the
equation

Fx = y

is governed by the conditioning number

κ(F ) = |F ||F−1|.

For normed chain complexes, we first turn d into a bijection d̄ : B/Ker(d)→ Im(d),
and set

κ(B) := |d̄ ||d̄−1|.
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Example. The n-stick satisfies H1 = 0. The 1-cochain g equal to 1̄ on the central
edge and 0 elsewhere can be written df where

‖g‖p = 1, ‖f ‖p ∼ n1/p .

0 0 0 1 0 0 0

g f

When n is large, solving df = g is unstable. The computation of cohomology is
ill-conditioned.

Definition

The conditionning number of a graph X is κ(X , p, k) = |d̄ ||d̄−1| where
d̄ : C0(X , k)/Ker(d)→ dC0(X , k). (It depends on p and on the field k).
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Isoperimetry = the art of cutting space
apart.

|A| = 5, |∂A| = 15.

Definition

Cheeger’s constant h(X ) of a graph X is the largest h such that for every set A of
vertices such that |A| ≤ 1

2
|X |,

|∂A| ≥ h |A|.

Here, ∂A is the set of edges connecting A to its complement.

Proposition

h(X ) =
2

κ(X , 1,F2)
= 2(‖d̄‖1→1‖d̄−1‖1→1)−1 over F2.
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Proposition

Let ∆ be the self-adjoint operator corresponding to the quadratic form
f 7→ ‖df ‖2

2 = 〈f ,∆f 〉. Let λ1 ≤ λ2 ≤ · · · denote its eigenvalues. If the graph X is
connected, then λ1 = 0 and

λ2 = (‖d̄−1‖2→2)−2.

In particular,
2λ−1

2 ≤ κ0(X , 2,R)2 ≤ 4λ−1
2 .

λ2 is known as the spectral gap of the graph.
It governs the speed at which a random walk on the graph is mixing. In particular, the
possibility of picking a vertex at random.

Morality. Normed chain complexes contain interesting information, beyond their mere
homology.
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Given a metric space X , a finite subset Y ⊂ X and r > 0, the Čech simplicial complex
Yr has a simplex (y0, . . . , yk ) each time

⋂
i B(yi , r) 6= ∅. Let C r

· denote the simplicial
chains of Yr .

Theorem (Bobrowski-Weinberger 2017)

Fix r < 1
2

and 1 ≤ k ≤ d. Let Y be an n-sample picked at random on the standard
d-torus. Then, with high probability, the k-homology of Yr coincides with the
homology of the torus as soon as

ωd r
d n� log n + k log log n,

and this fails if ωd r
d n� log n + (k − 2) log log n. If k = 0, the threshold is 2−d log n.

Question. Can one say that the chain complexes C r
· converge to some chain complex

attached to the torus?
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In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. The Banach-Mazur distance
BMDist(B1,B2) is the infimum of log(|F ||F−1|) over all isomorphisms F : B1 → B2

duch that Fd1 = d2F.

This is too restrictive: this implies dim(B1) = dim(B2).
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The second idea is too measure the size of homotopies.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. Consider all bounded
homotopies, i.e.

bounded morphisms F1 : B1 → B2 and F2 : B2 → B1 such that

d2F1 = F1d1, d1F2 = F2d2,

bounded operators Q1 : B1 → B1 and Q2 : B2 → B2 such that

1− F2F1 = d1Q1 + Q1d1, 1− F1F2 = d2Q2 + Q2d2.

Let q = max{|Q1|, |Q2|}, f = max{1, |F1||F2|}. The homotopy distance

HomDist(B1,B2) is the infimum over all homotopies of min{
q

f
+ log f ,

f

q
+ log q}.

The weird expression guarantees a triangle inequality.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B,Null), NH(B) = |d̄−1|.

Fact. ND is continuous. NH is continuous on the complement of Null .

Remark. ND is a function of NH for prehilbertian complexes, but not in general.

Definition

Let B be a normed chain complex. Let B̄ = B/Ker(d) and d̄ : B̄ → Im(d).
The singular values of B are the numbers

σj = inf{s ≥ 0 ; ∃L ⊂ B̄ subvectorspace such that

dim(L) ≥ j and ∀x̄ ∈ L, |d̄ x̄ | ≤ s|x̄ |}.

Fact. Each σj is continuous in homotopy distance.
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Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.

Example. The (de Rham) complex of smooth differential forms on a smooth compact
Riemannian manifold, in its L2 norm, is precompact.

Fact. A prehilbertian chain complex is precompact ⇐⇒ its singular values form a
finite sequence that tends to +∞.

Proposition

Let Bi be precompact prehilbertian chain complexes. Then Bi converges to B ⇐⇒
for every j, σj (Bi ) tends to σj (B).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point ?

Bounded ?
Precompact ?

Compactness criterion (Gromov) ?

Let X ,Y be metric spaces.

GHDist(X ,Y ) = inf{HDistZ (i(X ), j(Y )) ; Z metric space,

i : X → Z , j : Y → Z isometric embeddings}.

Z

j

i
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded ?
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Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact ?

Compactness criterion (Gromov) ?

B is homotopic to a null complex ⇐⇒ ND(B) <∞.

One can think of ND(B) = HomDist(B,Null) as an analogue of diameter.
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ?

B is precompact =⇒ B has a finite sequence of singular values that tends to +∞
(⇐⇒ if B is prehilbertian).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ????

Definition

X precompact metric space, ε > 0. The covering number N(X , ε) is the minimal
number of ε-balls that can cover X .

Theorem (Gromov’s compactness criterion)

A collection T of precompact metric spaces is precompact in Gromov-Hausdorff
distance if and only if there is a function ν which serves as a covering number for all
spaces in T , i.e.

∀ε > 0, ∀X ∈ T , N(X , ε) ≤ ν(ε).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ????

Definition

Let (B, d) be a normed chain complex that belongs to the closure of finite dimensional
normed complexes. Its profile is the smallest function
π = (πd , πc ) : (0,+∞)→ (0,+∞)2 with the following property. For every ε > 0,
there exists a finite-dimensional normed complex (B′, d ′) such that

HomDist(B,B′) < ε, dim(B′) ≤ πd (ε), κ(B′, d ′) ≤ πc (ε).

Theorem

A collection of nonnull normed chain complexes is precompact if and only if a same
profile serves for all and the distances to null complexes are bounded below.
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Lemma

Let B be a prehilbertian chain complex. Then the profile of B is determined by the
asymptotics of eigenvalues,

πd (ε) ≤ Card{λ ∈ spectrum(d∗d) ; λ <
1

ε2
}, πc (ε) ≤

1

ε
√
λ2
.

Example

Let M be a smooth compact Riemannian manifold. Consider the (de Rham) complex
of smooth differential forms on M in its L2 norm. Its profile satisfies πd (ε) ≤ C ε−N ,
where N = dim(M).

Conjecture

Consider finer and finer triangulations of a fixed compact manifold. The corresponding
complexes of simplicial cochains in their weighted `p norms form a precompact family.

Here, the weight of a simplex is a function of its volume.
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Let Y be a finite metric space. The complete simplicial complex ∆Y on Y takes as
simplices all tuples of points of Y . Pick a function of the diameter as a weight. Use
weighted `p norms on cochains. This gives a normed chain complex C ·(Y ).

The complete simplicial complex on 4 points.

Let (X , µ) be a metric measure space. Same construction with the same weight w
and Lp(µ⊗·) norms yields a normed chain complex C ·(X ).
Example. 1-cochains are functions c on X × X . The squared weighted L2 norm is∫

X×X
w(|x − x ′|)|c(x , x ′)|2 dµ(x) dµ(x ′).

Question. Given a metric measure space (X , µ) and a finite sample Y ⊂ X . Does
C ·(Y ) converge to C ·(X )?
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Online Learning with Exponential Weights
in Metic Spaces

under the Measure Contraction Property

Quentin Paris

HSE University
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Introduction

P
Online Learning in IR
Exponentially Weighted Average (EWA) forecaster
Performance analysis

Exponential Weights in Metic spaces

Bary centers
EWA forecaster in metic spaces
Measure Contraction Pro bertyI

Performance of the EWB forecaster
Jensen Inequality
Alexandrov curvature bounds
Connection with MCP property
Alex (M)>, x => Jensen -S inequality
Open question
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Introduction Online Learning in IRP

Classical setup ->
M CIRP convex

Il

-> 2 :

Set of convex "loss functions
l : M -> 1R

Repeated game

For all t> 1
- Player chooses Ct -M

17 11

->
Environment reveals & - 2

- Player incurs loss (t(xt)
and moves on to next round
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Introduction Online Learning in IRP

Performance measure : Regret

Rn = sup
Ce ,

...,
(n) =

2m(, (n) - inf ,(a)
x + M

- nee

③ ⑪ ②

Encodes ① Cumulative loss of player
② Competitive benchmark

③ "Worst case" point of view
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Exponentially Weighted Average (EWA) forecaster
· Assume MCIRP is a convex body

· Define
n = =

= (am+ (dn)

B>0 , parameter
of the

m : = 2nifi - algorithm

I me+ ,
(d) :

=

exp(- Bl=(n))
m((dr)

2
t + 1
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Introduction ENA forecaster
Remarks

me ,
(d) :

=

exp(- =(n))
m=(da)

2
t + 1

-> Naturally promotes decisions with smallI
cumulative loss

-> Performance analysis simplified by the "emp"

-> Theoreticaly attractive for non-euclidean
generalization
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Introduction Performance Analysis

Regret upper-bound

Thin (Hazan , Agarwal & Kale , 2007)

Assume ever 1- 2 is B - expconcave .

Then Ins 1 the EWA forecaster withI

parameter B satisfies

Ru
P In n

B

H

Def . 1 B-expconcave
- Bl

if t is concave



Introduction Performance Analysis

Expconcavity vs Convexity

Rmk

(B-expconcave
, >0 => Convex

a-strongly convex 1

! Lipschitz
=-

[2
-expconcave



Introduction Performance Analysis
Classical analysis relies upon :

1
.

Gibbs variational principle
2. Jensen's inequality
3 . Properties of the Lebesque measure

A CIRY
,
not IRY, = - Io ,

1]
.I A

0
I->()= Yxp(A)

xi
= \(1 - z)x + Ex : x - A 3

↳
↳

(1 - 2) x + Ex
0

⑧

A

M ·

An



Exponential Weights in Metric Spaces



Exponential weights in (M
,
d)

consider
-> (M

,
d) metic space

-> Family 2 of loss functions & : M- IR



Exponential weights in (M
,
d)

consider
-> (M

,
d) metic space

-> Family 2 of loss functions & : M- IR

Online Learning Problem

* t > 1
> Player picks xt M

->
Environment reveals Itt 2

-> Player incurs loss It (n1) and
moves on to next round



Exponential weights in (M
,
d)

consider
-> (M

,
d) metic space

-> Family 2 of loss functions & : M- IR

Online Learning Problem

* t > 1
> Player picks xt M

->
Environment reveals Itt 2

-> Player incurs loss It (n1) and
moves on to next round

Questions

->
Reasonable up ?

-> Which (M , d) => Small Rn ?
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,
d)

Consider
- (M ,

d) metric space
> probability measure on M

Def m - P2 (M) if YxtM :

(qd(x , y)m(dy) + x

Def n
*

M barycenter of mt P (M) if

x

*

- argmin((x , y) m(d )
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Exponential weights in (M
,
d)

EWA forecaster in metic spaces
Select a prior +-P(M) and select

nt barycenter of me where

My : = m

I me
,
(d) :

=

exp(- =(n))
m=(da)

2
t + 1

Question

Performance (Regret) of EWA in terms of
geometric properties of (M ,

d
,
m) ?



Exponential weights in (M
,
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Geodesic spaces

Def (M
,
d) called geodesic if :

↓ Yo
,
x

,
EM

,
I U

:

Fo
,
11 - M s

.

t
.

-> U(0) = No
,
U(1) = x ,

-> s
,
t : d(V(s)

,
V(t)) =

1s - t1d(x
,x)
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Exponential weights in (M
,
d)

Geodesic homothety
Consider (M ,

d
, m) and suppose

-> (M , d) geodesic
-> Negligeable cut-loci :

FutM

m((y - M :

I unique Un
, y

: [0
,
1 +

M3) =

1

good . from a to y

Def (Geodesic homothety)
U (2)⑧ A

For ACM
,
xEM and a t To

,
1]

x
, y

E

·

-

EAxi = [Ux , y(z) : y
+ M) &

An
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Measure Contraction Properly (MCP)

Def . (S .

-1
.

Onta
,
2006)

For KERR and p>1 ,
(M

,
01

, m) satisfies the
MCP (K

, P) property if :

+xEM
,
=- (0

,
1)

,
FACM

lif k>0 , FACB(a, /(p-1)/k) (
p

- 1

m(A), 2 l 7 Sk (2) e) m(dy)

~x) (
-Sin(K) , if K >0

K
S (2) = r if k = 0
k Isink(r-K , if K <O

- k



Exponential weights in (M
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Measure Contraction Properly (MCP)

Def . (S .

-1
.

Onta
,
2006)

For KERR and p>1 ,
(M

,
01

, m) satisfies the
MCP (K

, P) property if :

+xEM
,
=- (0

,
1)

,
FACM

lif k>0 , FACB(a, /(p-1)/k) (
p

- 1

Sx()m(A), 2 l x) (
m(dy)

Rem
.

Similar definitions introduced by
· Kuwae & Shioya (2001

,
2003)

· Sturm (2006)



Exponential weights in (M
,
d)

Measure Contraction Properly (MCP)

Rem
. Inequality p

- 1

m(A) S I Sx() m(dy)

A x) (
Becomes "When (M ,

d
, m) is theI

p-dimensional Riemanian space form of
constant sectional curvatureK with

Riemanian distance d and volume measure m
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,
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Main intuition

I MCP property = Synthetic Ricci Curvature
>7

Lower Bound

Formally

thin (Onta
, 2006)

Assume. M complete Riem . mfol
⑧ d Riem

.

distance

⑧ i Volume measure
Then

RicM K (M ,
d

, m) satisfies

dimM4p
=>

MCP(k
,
p)
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,
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Consider - (M
,
d

,
m)

-> EWA forecaster , parameter and prior m

Thi (P
., 2021)

Suppose that

· All lt2 are geodesically-expconcave

· (M
,
d
, m) satisfies MCP (K

, p) ,
Then In I

Rnx C Penn
B
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Exponential weights in (M
,
d)

Example : Log-concave priors on IRP
-
V

ISuppose (M ,
d
, m) = ( +RP, I.. --112 , 20 C

Fact If potential Vis y-expconcave ,
them

- V

(RP
,
I . --112 edx) satisfies the

MCP (0
, p+5) property

- V

> EWA with prior e di will satisfy

Rn P In n

B
for -expconcave losses



Jensen Inequality



Jensen Compatibility
Alexandro curvature bounds

Def (Model spaces) Use t1R
,
let (M2 dre)2 I

be the unique 2-dim . complete and
simply connected Riemannian manifold with
constant sectional curvature e

x < O 2 = 0 x >0

Hyperbolic plane Euclidean Euclidean
with distance multiplied plane sphere
by /F of radius Yx N 2

x

Mo with angular
M2 distance

7 M
2

& x·T L -
-x = &
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Jensen Compatibility
Alexandro curvature bounds

Def Let ( M
,
d) be geodesic and bet1R .

Alex (M)>, xe if ↓ p , x , y M and
↓ U : to

, 1- M geodesic connecting i to y :

d(p ,
W(t)) > dx(P ,

U(t))

isometric copy

8

x -
·

a

·
111111
ins · W(t)

· 11 111 I , 1118 W(t)

P P

④ ④

y y
- -

in M in Me



Jensen Compatibility
Alexandro curvature bounds

Def Let ( M
,
d) be geodesic and bet1R .

Alex (M)>, xe if ↓ p , x , y M and
↓ U : to

, 1- M geodesic connecting i to y :

d(p ,
W(t)) > dx(P ,

U(t))

isometric copy

8

x -
·

a

④

1111111111111111 · U(t)
·

I . U(t)

P P

④ ④

y y
- -

in M in Me
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Jensen Compatibility
Connection to MCP property
Thin (Kuwae & Shioya ,

2001 and Onta 2006)

Assume that. Alex (M) > se ,
setIR

· M compact

· M has finite Hausdorff dimension p>/

Then (M
,
d
, Alp) satisfies MCP ((p-1)2 , p)

Essentially
Alex (M) > se

dim TM) =

P I => > MCP ((p-1)x , p)



Jensen's inequality

Def .

Let (M
,
d) be geodesic .

M is called Jensen compatible if
-> f : M-1R good . convex

~ Pz(M)-> I
*

-> ↓ x barycenter ofy
We have

f(xt) ->(f(x)y(da)



Jensen Compatibility

Jensen's inequality in metic spaces
> Kendall (1990)

-

-> Emery & Mokobodzki (1991)
- sturm (2003) : Alex (M) < 0
-> Kuwae (2009) : Alex (M) <C+ small radius
->
kuwae (2014) : Convex spaces

->
Yokota (2016) :

Alex (M)/C+ small radius
-> Kim & Pass (2016) : Wasserstein space



Jensen Compatibility

Alex (M) > < = > Validity of Jensen's inequality
Thi (P

., 2021)

Suppose (M ,
d) is Polish and geodesic and such

that Alex (M) > ce , ret IR .

Then if
· I is geodesically convex
⑧ N t Pz(M)

A barycenter of /⑳ x U

· f locally Lipschitz at n* 7

we have

f(x*) - (f d



Jensen Compatibility
Observation

Alex (M) > se seems asking too much for our pbl

Question

Sier (M ,
d
,m) satisfies MCP(K , p) and

· f : M-R geodesically convex
- V

· N<< m with = 2
,
V geod . convex

⑧ n

*

barycenter of
Then

,
do we have

f(x) - / f dy



For more details

>
Online learning with exponential weights in
metric spaces

arxiv : 2103
. 14389

-
Jensen's inequality in geodesic spaces with

Ilower bounder curvature

arxiv : 2011
. 08597



Merci !



Exponential weights in (M
,
d)

Let (M
, d) be geodesic

Consider the EWB forecaster with ->
Parameter >o

->
Prior m t Pz(M)

Th (Demidova & P
.,
2021)

Suppose . All lt2 are geodesically -expconcave

· (M
,
d) is Jensen compatible

⑧· (M
,
d
, m) satisfies MCP(K , p) , K >

,
0

Then the EWB forecaster with parameter B and
prior m satisfies

2Un > I
, Ru X

B
- I en



Exponential weights in (M
,
d)

Th (Demidova & P
.,
2021)

Suppose . All lt2 are geodesically -expconcave

· (M
,
d) is Jensen compatible

⑧· (M
,
d
, m) satisfies MCP(K , p) , K <O

and c
= inf(4(d(n , y)

- x)m(dy)6 + a

EM p
- 1

where 4( :
= acoth() exp)-ecoth(a))

Then the EWB forecaster with parameter B and
prior m sale-sfies
Un>

,
I
I
Rn < (2 + (n) + eum



ERC AdG 2018-2023   G-Statistics

Xavier Pennec
Université Côte d’Azur and Inria, France

Freely adapted from “Women teaching geometry”, in 
Adelard of Bath translation of Euclid’s elements, 1310.

Taylor expansion of geodesic triangles in Riemannian 
manifolds: a central tool to study the effect of 

curvature in geometric statistics

Statistics in Metric Spaces
ENSAE, Palaiseau, 11-13/10/2023



X. Pennec – ENSAE - 12/10/2023 2

Methods to compute statistics of organ shapes across 
subjects in species, populations, diseases… 

 Mean shape (atlas), subspace of normal vs pathologic shapes
 Shape variability (Covariance)
 Model development across time (growth, ageing, ages…)

Use for personalized medicine (diagnostic, follow-up, etc)
 Classical use: atlas-based segmentation

Application context: Computational Anatomy



Impact of geometry on statistical learning

Non-linearity is everywhere in data analysis
 Images, shapes, transformations, texture, segmentations…
 Computational anatomy : Brain, heart, liver, 
 Other applications: shape of molecules, Gram matrices…

Modeling at the population level:
 Simple statistics on non-linear Riemannian manifolds
 Frechet Mean, tPCA, PGA or GPCA

X. Pennec – ENSAE - 12/10/2023 3

Connectomics



X. Pennec – ENSAE - 12/10/2023 4

Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III
• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V
• Mode 4: King’s class V (+II)

tPCA on SE(3)16 with left-invariant metric
4 first variation modes have clinical meaning

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009



Diffeomorphometry

Lift statistics to transformation groups
 [D’Arcy Thompson 1917, Grenander & Miller]
 LDDMM = right invariant kernel metric (Trouvé, Younes, Joshi, etc.)

No bi-invariant metric in general for Lie groups
 Partial compatibility of Fréchet mean with the group structure:

 Frechet mean is not right invariant nor inverse consistent

 Examples with simple 2D rigid transformations

A natural bi-invariant affine symmetric space structure
 Symmetric bi-invariant Cartan-Schouten connection (non-metric)
 Geodesics through Id = one-parameter subgroups: M(t) = exp(t.V)

 Diffeomorphisms : flow of Stationary Velocity Fields (SVFs)
[XP & Arsigny, 2012 ; XP & Lorenzi, IJCV 2013, Beyond Riemannian Geometry, 2019]

 Automatically “inverse-consistent”

X. Pennec – ENSAE - 12/10/2023 5

Patient 3

Atlas

Patient 1

Patient 2
Patient 4

Patient 5

φ1

φ2
φ3

φ4

φ5



Normal/AD modeling: Statistics on diffeomorphisms

Normal aging

Addition specific 
component for AD

mm/year

Triangulus
(Alzheimer) 

Quadratus 
(control) 

Mean geodesic 
trajectory for AD

Mean geodesic trajectory 
for normal aging 

Rutundus

(Reference)

SVF parametrizing the 
deformation trajectory 
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Anatomical normalization: parallel transport (domain adaptation)

[ Lorenzi, XP. IJCV, 2013 ]

[ Sivera et al, Neuroimage, 2019 ]

Patient specific 
geodesic regression



Part 1: Foundations 
 1: Riemannian geometry [Sommer, Fetcher, Pennec]
 2: Statistics on manifolds [Fletcher]
 3: Manifold-valued image processing with SPD matrices [Pennec]
 4: Riemannian Geometry on Shapes and Diffeomorphisms [Marsland, 

Sommer]
 5: Beyond Riemannian: the affine connection setting for transformation 

groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces 
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]
 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 

Applications [Chakraborty, Vemuri]
 8: Statistics in stratified spaces [Feragen, Nye]
 9: Bias in quotient space and its correction [Miolane, Devilier, Pennec]
 10: Probabilistic Approaches to Statistics on Manifolds: Stochastic 

Processes, Transition Distributions, and Fiber Bundle Geometry 
[Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and Their 
Inverses [Zhang, Klassen, Srivastava]
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Part 3: Deformations, Diffeomorphisms and their Applications 
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-shapes, normal 

cycles [Charlie, Charon, Glaunes, Gori, Roussillon]
 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]
 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

2020, Academic Press, 600 p.

Geometric statistics in 2020



Main questions of this talk

Statistics on manifolds based on Fréchet mean
 Uncertainty of its estimation: confidence region?
 Is there an impact of curvature on statistical tests?
 In practice: limited number of samples (50 to 100)
 How large should be n for asymptotic results?

Parallel transport algorithms
 Ladders algorithms appear to be very efficient
 Establish numerical accuracy beyond first order?

A common mathematical tool 
 Intrinsic Taylor expansions of geodesic triangles
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Taylor expansion of geodesic triangles in 
Riemannian manifolds: a central tool to study the 

effect of curvature in geometric statistics

Motivations

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

Numerical accuracy of parallel transport algorithms
[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport 

on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022 ]

Conclusions
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction
Addition
Distance

Gradient descent )( ttt xCxx ∇−=+ εε

)(yLogxy x=
xyxy +=

xyyx −=),(dist
x

xyyx =),(dist
)(xyExpy x=

))( ( txt xCExpx
t

∇−=+ εε

xyxy −=

Reformulate algorithms with Expx and Logx
Vector -> Bi-point (no more equivalence classes)

Exponential map (Normal coordinate system):
 Expx = geodesic shooting parameterized by the initial tangent
 Logx = unfolding the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 
 Geodesic completeness: covers M \ Cut(x)

10X. Pennec – ENSAE - 12/10/2023
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Statistical tools

Fréchet mean set 
 Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

 𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧)

 Fréchet mean [1948] = global minima of Mean Sq. Dist.
 Exponential barycenters [Emery & Mokobodzki 1991]
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 log𝑥̅𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) = 0 [critical points if P(C) =0]

Moments of a random variable: tensor fields
 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 log𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 log𝑥𝑥 𝑧𝑧 ⊗ log𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) Second moment: (0,2) tensor field
 Tangent covariance field: 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝔐𝔐2 −𝔐𝔐1 ⊗𝔐𝔐1

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 log𝑥𝑥 𝑧𝑧 ⊗ log𝑥𝑥 𝑧𝑧 ⊗⋯ ⊗ log𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) k-moment: (0,k) tensor field

X. Pennec – ENSAE - 12/10/2023
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Asymptotic behavior of the mean
Uniqueness of p-means with convex support

[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11] 

 Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
 Positive curvature: [Karcher 77 & Kendall 89] concentration conditions (KKC):

Support in a regular geodesic ball of radius 𝑟𝑟 < 𝑟𝑟∗ = 1
2

min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]
 Under suitable concentration conditions [KKC], for IID n-samples:

 𝑥̅𝑥𝑛𝑛 → 𝑥̅𝑥 (consistency of empirical mean)

 𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥(𝑥̅𝑥𝑛𝑛)→𝑁𝑁(0, �𝑯𝑯−𝟏𝟏 𝜮𝜮 �𝑯𝑯−𝟏𝟏) if  �𝐻𝐻 = ∫𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑥̅𝑥
1
2
𝑑𝑑2 𝑦𝑦, 𝑥̅𝑥 𝜇𝜇(𝑑𝑑𝑑𝑑) invertible

 Problems for larger supports [Huckemann & Eltzner, H. Le, D. Tran]

Behavior in high concentration conditions?
 No expression for Hessian: interpretation of covariance modulation?
 What happens for a small sample size (non-asymptotic behavior)?
 Can we extend results to affine connection spaces?
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Curvature effects in Geometric statistics : empirical 
Fréchet mean and parallel transport accuracy

Motivations for statistics on manifolds

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

 Asymptotic BP-CLT
 Small sample & high concentration expansion

Numerical accuracy of parallel transport algorithms
[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport 

on Manifolds. Foundations of Computational Mathematics, online 04-2021 ]

Conclusions



Principle and difficulty

The empirical mean 𝑥̅𝑥𝑛𝑛 of an IID n-sample with population 
mean 𝑥̅𝑥 is a random variable on M

 Locate 𝑥̅𝑥𝑛𝑛 in a normal coordinate system at 𝑥𝑥 for a given empirical law
 Compute the moments of the empirical mean 𝑥̅𝑥𝑛𝑛at 𝑥̅𝑥:

 Expectation at the population mean:  B𝐢𝐢𝐢𝐢𝐢𝐢 𝑥̅𝑥𝑛𝑛 = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛
 Covariance matrix 𝐂𝐂𝐂𝐂𝐂𝐂(𝑥̅𝑥𝑛𝑛) = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛
 Compare with asymptotic BP-CLT for large n

Empirical and population means are exponential barycenters
 n-sample Xn = 1

𝑛𝑛
∑𝑖𝑖 𝛿𝛿𝑥𝑥𝑖𝑖  tangent mean vector field is 𝔐𝔐1 𝑥𝑥 = 1

𝑛𝑛
∑𝑖𝑖 log𝑥𝑥(𝑥𝑥𝑖𝑖)

 Locate the zero 𝑥̅𝑥𝑛𝑛  Taylor expansion of 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙𝒗𝒗 𝒚𝒚 for 𝒙𝒙𝒗𝒗 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒙𝒙(𝒗𝒗)?
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Riemannian distance derivatives
How does the (squared) distance (Synge’s world function) 

vary with endpoints? 
 First order derivatives is easy

𝐷𝐷𝑣𝑣 dist2 𝑥𝑥𝑣𝑣,𝑦𝑦 = −2 log𝑥𝑥𝑣𝑣 𝑦𝑦 with xv = exp𝑥𝑥 𝑣𝑣
 Higher order derivatives begin to be quite involved: 

Taylor expansion in normal coordinates (Grey 1973, Brewin 1998, 2009)

 Problem: log𝑥𝑥𝑣𝑣 𝑦𝑦 ∈ 𝑇𝑇𝑥𝑥𝑣𝑣𝑀𝑀 and not to Tx𝑀𝑀: many terms due to Dexp𝑥𝑥 𝑣𝑣
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Taylor expansion of geodesic triangles
Key idea: use parallel transport rather that normal chart to relate 𝑇𝑇𝑥𝑥𝑀𝑀 to 𝑇𝑇𝑥𝑥𝑣𝑣𝑀𝑀

Gavrilov’s double exponential is a tensorial series (2006):

Neighboring log expansion [XP arXiv:1906.07418, 2019]
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𝑙𝑙𝑥𝑥 𝑣𝑣,𝑤𝑤 = Π𝑥𝑥𝑣𝑣
𝑥𝑥 log𝑥𝑥𝑣𝑣 exp𝑥𝑥(𝑤𝑤)

= 𝑤𝑤 − 𝑣𝑣 +
1
6
𝑅𝑅 𝑤𝑤, 𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 +

1
24

𝛻𝛻𝑣𝑣𝑅𝑅 𝑤𝑤,𝑣𝑣 2𝑣𝑣 − 3𝑤𝑤

+
1

24
𝛻𝛻𝑤𝑤𝑅𝑅 𝑤𝑤,𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 + 𝑂𝑂 5

ℎ𝑥𝑥 𝑣𝑣,𝑢𝑢 = log𝑥𝑥(exp𝑥𝑥𝑣𝑣(Π𝑥𝑥
𝑥𝑥𝑣𝑣 𝑢𝑢))

= 𝑣𝑣 + 𝑢𝑢 +
1
6
𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 +

1
3
𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑢𝑢

+
1

24
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢,𝑣𝑣 2𝑣𝑣 + 5𝑢𝑢 +

1
24

𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 + 2𝑢𝑢 + 𝑂𝑂 5

Torsion free affine manifolds



Taylor expansion of recentered mean map

𝐱𝐱𝐯𝐯 = exp𝒙𝒙(𝒗𝒗) is an exponential barycenter if 𝔐𝔐1 𝒙𝒙𝒗𝒗 = 𝟎𝟎
 𝔑𝔑𝑥𝑥 𝑣𝑣 = Π𝑥𝑥𝑣𝑣

𝑥𝑥 𝔐𝔐1 𝑥𝑥𝑣𝑣 = ∫𝑀𝑀𝜫𝜫𝒙𝒙𝒗𝒗
𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙𝒗𝒗 𝒚𝒚 𝜇𝜇(𝑑𝑑𝑑𝑑) has a zero at v = log𝑥𝑥 𝑥̅𝑥

 𝕸𝕸𝟏𝟏 is a tensor field,    𝕹𝕹𝒙𝒙 is an analytic endomorphism of 𝑻𝑻𝒙𝒙𝑴𝑴

Taylor expansion with neighboring log:
𝔑𝔑𝑥𝑥 𝑣𝑣 = 𝔐𝔐1 − 𝑣𝑣 +

1
6𝑅𝑅 𝔐𝔐1, 𝑣𝑣 𝑣𝑣 −

1
3𝑅𝑅 ∗, 𝑣𝑣 ∗ ∶ 𝔐𝔐2

∗∗ +
1

12 𝛻𝛻𝑣𝑣𝑅𝑅 𝔐𝔐1, 𝑣𝑣 𝑣𝑣

+
1

24 𝛻𝛻∗𝑅𝑅 ∗, 𝑣𝑣 𝑣𝑣 :𝔐𝔐2
∗∗ −

1
8 𝛻𝛻𝑣𝑣𝑅𝑅 ∗, 𝑣𝑣 ∗∶ 𝔐𝔐2

∗∗ −
1

12 𝛻𝛻∗𝑅𝑅 ∗, 𝑣𝑣 ∗∶ 𝔐𝔐3
∗∗∗ + 𝑂𝑂 𝜀𝜀5

Solve for the value v = log𝑥𝑥 𝑥̅𝑥 zeroing-out the polynomial
log𝑥𝑥(𝑥̅𝑥) = 𝔐𝔐1 −

1
3𝑅𝑅 ∗,𝔐𝔐1 ∗ ∶ 𝔐𝔐2 +

1
24 𝛻𝛻∗𝑅𝑅 ∗,𝔐𝔐1 𝔐𝔐1 ∶ 𝔐𝔐2

∗∗

−
1
8 𝛻𝛻𝔐𝔐1𝑅𝑅 ∗,𝔐𝔐1 ∗ ∶ 𝔐𝔐2

∗∗ −
1

12 𝛻𝛻∗𝑅𝑅 ∗,𝔐𝔐1 ∗ ∶ 𝔐𝔐3
∗∗∗ + 𝑂𝑂(𝜀𝜀5)
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Expectation for a random n-sample

For one empirical n-sample 𝐗𝐗𝐧𝐧 = 𝟏𝟏
𝒏𝒏
∑𝒊𝒊 𝜹𝜹𝒙𝒙𝒊𝒊 with moments 𝔛𝔛𝒌𝒌𝒏𝒏

 log𝑥𝑥(𝑥̅𝑥𝑛𝑛) = 𝔛𝔛1𝑛𝑛 −
1
3
𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 ∗ ∶ 𝔛𝔛2𝑛𝑛 + 1

24
𝛻𝛻∗𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 𝔛𝔛1𝑛𝑛 ∶ 𝔛𝔛2𝑛𝑛 ∗∗

− 1
8
𝛻𝛻𝔛𝔛1𝑛𝑛𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 ∗ ∶ 𝔛𝔛2𝑛𝑛 ∗∗ −

1
12

𝛻𝛻∗𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 ∗ ∶ 𝔛𝔛3𝑛𝑛 ∗∗∗ + 𝑂𝑂(𝜀𝜀5)

Take expectation for a random IID n-sample
 𝔼𝔼 𝖃𝖃𝑘𝑘𝑛𝑛 𝑥𝑥 = 𝕸𝕸𝑘𝑘 𝑥𝑥

 𝔼𝔼 𝖃𝖃𝑝𝑝𝑛𝑛 ⊗ 𝖃𝖃𝑞𝑞𝑛𝑛 = 𝑛𝑛−1
𝑛𝑛
𝕸𝕸𝑝𝑝+𝑞𝑞 ⊗𝕸𝕸𝑝𝑝+𝑞𝑞 + 1

𝑛𝑛
𝕸𝕸𝑝𝑝+𝑞𝑞

 Etc…

Moments of the empirical mean at the population mean:
 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 𝑥̅𝑥𝑛𝑛 = 𝔼𝔼[log𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ] = 𝑛𝑛−1

6𝑛𝑛2
𝛻𝛻∗𝑅𝑅 ∗,∘ ∘ : 𝔐𝔐2

∗∗ : 𝔐𝔐2
∘∘ +𝑂𝑂(𝜀𝜀5)

 𝐂𝐂𝐂𝐂𝐂𝐂 𝑥̅𝑥𝑛𝑛 = 𝔼𝔼 log𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ log𝑥̅𝑥 𝑥̅𝑥𝑛𝑛
= 1

𝑛𝑛
𝔐𝔐2 −

𝑛𝑛−1
3𝑛𝑛2

𝔐𝔐2
∗∗ : ∘⊗ 𝑅𝑅 ∗,∘ ∗ +𝑅𝑅 ∗,∘ ∗ ⊗∘ ∶ 𝔐𝔐2

∘∘ +𝑂𝑂(𝜀𝜀5)
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Asymptotic behavior of empirical Fréchet mean
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Moments of the Fréchet mean of a n-sample
 Surprising Bias in 1/n on the empirical Fréchet mean (gradient of curvature)

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁(𝑥̅𝑥𝑛𝑛) = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
1
6𝑛𝑛

𝔐𝔐2:𝛻𝛻𝑅𝑅:𝔐𝔐2 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Concentration rate: term in 1/n modulated by the curvature:

𝐂𝐂𝐂𝐂𝐂𝐂(𝑥̅𝑥𝑛𝑛) = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
1
𝑛𝑛
𝔐𝔐2 +

1
3𝑛𝑛

𝔐𝔐2:𝑅𝑅:𝔐𝔐2 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Negative curvature: faster CV than Euclidean 
 Positive curvature: slower CV than Euclidean

Central-limit theorem in manifolds [Bhattacharya & Bhattacharya 2008; Kendall & Le 2011]

 Under Kendall-Karcher concentration conditions:
𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥(𝑥̅𝑥𝑛𝑛)→

𝐷𝐷
𝑁𝑁(0,𝐻𝐻−1 𝛴𝛴 𝐻𝐻−1) if  𝐻𝐻 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝑀𝑀 𝑋𝑋, 𝑥̅𝑥𝑛𝑛 invertible

 Hessian of mean sq. dist: 1
2
�𝐻𝐻 = 𝐼𝐼𝐼𝐼 + 1

3
𝑅𝑅:𝔐𝔐2 + 1

12
𝛻𝛻𝛻:𝔐𝔐3 + 𝑂𝑂 𝜖𝜖4, 1/𝑛𝑛2

 Same expansion for large n: modulation of the CV rate by curvature
(but our non asymptotic expansion is valid for small data as well)

[XP, 2018, ARXIV : 1811.01370 ]



Isotropic distribution in constant curvature spaces

 Symmetric spaces: no bias at order 5

 Modulation of variance w.r.t. Euclidean: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥̅𝑥𝑛𝑛 = 𝛼𝛼 𝜎𝜎2

𝑛𝑛

High concentration expansion
 𝛼𝛼 = 1 + 2

3
1 − 1

𝑑𝑑
1 − 1

𝑛𝑛
𝜅𝜅𝜎𝜎2 + 𝑂𝑂(𝜖𝜖5)

Asymptotic BP-CLT expansion

 𝛼𝛼 = 1
𝑑𝑑

+ 1 − 1
𝑑𝑑
�ℎ

−2
+ 𝑂𝑂 𝑛𝑛−2

Archetypal modulation factor
 Uniform distrib on 𝑆𝑆 𝑥̅𝑥,𝜃𝜃 ⊂ 𝑀𝑀 , 

large n, large d: 𝛼𝛼 = tan2 𝜅𝜅𝜃𝜃2

𝜅𝜅𝜃𝜃2
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𝜋𝜋2

4

𝐥𝐥𝐥𝐥𝐥𝐥
𝜿𝜿𝜽𝜽𝟐𝟐=𝝅𝝅𝟐𝟐/𝟐𝟐𝟐𝟐

𝜶𝜶 = +∞

No CV for uniform 
distrib on equator

𝐥𝐥𝐥𝐥𝐥𝐥
𝜿𝜿𝜽𝜽𝟐𝟐=−∞

𝜶𝜶 = 𝟎𝟎

Immediate convergence: sticky mean 
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Accurate asymptotic expansion

High sample size
Low & large variance

Accurate expansion even with small sample

Small variance 
w.r.t. curvature



Boostrap on real spherical data from
[Fisher, Lewis, Embleton 1987] 

B15: high isotropic dispersion (stddev 32o, bbox: 76ox63o)
 94 orientations of dendritic fields in cat’s retinas [Keilson et al 1983]
 High dispersion, KKC on the sphere

 Visible modulation (isotropic formulas are good)
 Small sample expansion behavior is well predicted
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Boostrap on real projective data from
[Fisher, Lewis, Embleton 1987] 

Fisher B1: high dispersion 
 50 pole positions from Paleomagnetic

study of new Caledonian laterites 
(Falvey & Mustgrave)

Spherical (not KKC)
 Stddev 41o, bbox: 98o x 67o

 Small var and asymptotic OK
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Projective (not KKC)
 Stddev 40o, bbox: 86o x 76o

 Prediction fails: smeary mean?
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Taylor expansion of geodesic triangles in 
Riemannian manifolds: a central tool to study the 

effect of curvature in geometric statistics

Motivations

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

Numerical accuracy of parallel transport algorithms
[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport 

on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022 ]

Conclusions



Normal/AD modeling: Statistics on diffeomorphisms

Normal aging

Addition specific 
component for AD

mm/year

Triangulus
(Alzheimer) 

Quadratus 
(control) 

Mean geodesic 
trajectory for AD

Mean geodesic trajectory 
for normal aging 

Rutundus

(Reference)

SVF parametrizing the 
deformation trajectory 
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Anatomical normalization: parallel transport (domain adaptation)

[ Lorenzi, XP. IJCV, 2013 ]

[ Sivera et al, Neuroimage, 2019 ]

Patient specific 
geodesic regression



Discrete approximations of Parallel transport
Schild’s Ladder [Schild’s lectures at Princeton 60ies, Elhers et al 1972]

 Build geodesic parallelogramme
 Iterate along the curve 
 One step is a 1st order approximation [Kheyfets et al 2000]
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𝑣𝑣
𝑥𝑥1 𝑥𝑥2𝑤𝑤 𝑥𝑥3 𝑥𝑥4

𝑥𝑥𝑣𝑣

Pole ladder: [Lorenzi, XP, JMIV 50 (1-2), 2013]

 Simpler method with piecewise geodesics
 Closed form expression for Cartan connection on Lie groups

 One step is of order 4 in general affine manifolds [XP, Arxiv 1805.11436, 2018 ]

 Exact in symmetric spaces (transvection)!

𝑣𝑣
𝑥𝑥

pole(u) = Π(𝑢𝑢) + 1
12
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢,𝑣𝑣 5𝑢𝑢 − 2𝑣𝑣 + 1

12
𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 − 2𝑢𝑢 + 𝑂𝑂(5)

 No approximation formula beyond 1st order for SL
 No results for the iterated SL and PL schemes
 No results for approximate geodesics

𝑥𝑥



Convergence of Schild’s Ladder
Gavrilov’s Taylor expansion of one Schild’s ladder step

 A new Taylor series for mid-point rule 

Convergence of the iterated Schild’s ladder
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𝑤𝑤

𝑣𝑣
𝑢𝑢𝑤𝑤

𝑥𝑥

𝑎𝑎

𝑥𝑥𝑣𝑣

𝑢𝑢

Theorem: the scheme converge at speed
[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 

Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Convergence of Schild’s Ladder

Numerical experiments in controlled spaces
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Simulations on the sphere: 
constant curvature

Simulations on the space of SPD 
matrices: negative curvature

State of the art

Our result

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Convergence of pole Ladder
Taylor expansion of one pole ladder step

Convergence of the iterated pole ladder
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pole(u) = Π(𝑢𝑢) + 1
12
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢,𝑣𝑣 5𝑢𝑢 − 2𝑣𝑣 + 1

12
𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 − 2𝑢𝑢 + 𝑂𝑂(5)

Theorem: the scheme converge at speed

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Convergence of pole Ladder

Numerical experiments in controlled spaces
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Anisotropic metric on the Lie group SE(3)

Euler

Schild’s α=1

Pole ladder

Kendall shape space Σ33

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Approximated geodesics
 Integration using Runge-Kutta
 Compute the log by gradient descent

 Convergence results remain valid with 
sufficiently accurate numerical scheme

Fanning Scheme [Louis et al 2018]
 Can be analyzed similarly
 Cannot ne made 2nd order

Approximate geodesics & other schemes
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[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



http://geomstats.ai : a python library to implement 
generic algorithms on many Riemannian manifolds 

Specific & generic manifolds
 Exp/Log map to generalize Euclidean tools
 20+ specific manifolds / Lie groups with 

closed-forms (SPD, H(n), SE(n), etc)
 Generic manifolds with geodesics by 

integration / optimization

Algorithms
 Fréchet mean, geodesic regression, 

tangent / geodesic PCA, Riemannian k-
means, mean-shift, parallel transport

 scikit-learn API (GPU & learning tools)
 Collaboration with pyriemann for BCI
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and many more collaborators

http://geomstats.ai/


http://geomstats.ai : a python library to implement 
generic algorithms on many Riemannian manifolds 

Collaborative development
 10 introductory tutorials
 ~ 35000 lines of code 
 ~20 academic developers
 8 hackathons in 2020-2022, 1 Inria ADT 

Semestre thématique IHP Geometry and Statistics in Data Science 
Hackathon IHP Oct 17-21+ Journée Math & entreprises Nov 08, 2022

Interest in Machine Learning
 Miolane, Guigui, et al. SciPy Int. Conf. (2020).
 Miolane et al. Journal of Machine Learning Research (2020)
 Guigui, Miolane, Pennec. Intro. to Riem. Geom. and Geom. Stats: from 

basic theory to implementation with Geomstats. Monography of 164 p.
Foundations and Trends in Machine Learning (2023, 16 (3):329-493). 
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and many more collaborators

http://geomstats.ai/
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Taylor expansion of geodesic triangles in 
Riemannian manifolds: a central tool to study the 

effect of curvature in geometric statistics

Motivations

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

Numerical accuracy of parallel transport algorithms
[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport 

on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022 ]

Conclusions



Intrinsic Taylor expansions 
of geodesic triangles in manifolds

A new tool for the analysis of algorithms on manifolds
 Double exponential (Gavrilov) and neighboring log are simple tensor series!
 Also valid in affine connection spaces (Lie groups with CS connection)

Numerical accuracy of discrete parallel transport methods
 Jacobi field/fanning scheme is limited to order 1
 Schild’s ladder can be made of order 2
 Simpler pole ladder is order 2 + exact in one step in symmetric spaces

Riemannian manifolds with no closed-form geodesics
 Computing geodesics by integration and log by gradient descent
 Theorems continue to hold, implementation available in http://geomstats.ai
 log by gradient descent: natural schemes for mid-point/doubling rule?

Numerical accuracy of other geodesics-based algorithms?
X. Pennec – ENSAE - 12/10/2023 36

http://geomstats.ai/


Empirical and population means: curvature?

X. Pennec – ENSAE - 12/10/2023 37

Curvature-covariance controls bias and concentration modulation
 Bias on empirical mean (gradient of curvature-covariance)

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁(𝑥̅𝑥𝑛𝑛) = 𝑬𝑬 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
𝟏𝟏
𝟔𝟔𝟔𝟔

𝕸𝕸𝟐𝟐:𝛁𝛁𝑹𝑹:𝕸𝕸𝟐𝟐 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Concentration rate modulated by the curvature-covariance:
𝐂𝐂𝐂𝐂𝐂𝐂(𝑥̅𝑥𝑛𝑛) = 𝑬𝑬 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =

𝟏𝟏
𝒏𝒏
𝕸𝕸𝟐𝟐 +

𝟏𝟏
𝟑𝟑𝟑𝟑

𝕸𝕸𝟐𝟐:𝑹𝑹:𝕸𝕸𝟐𝟐 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Faster convergence (asymptotically infinitely) for negative curvature
 Slower convergence (up to no convergence at KKC limit) in positive curvature

Lesson for AI: high curvature has drastic impact with small data!
 High concentration and asymptotic predictions are confirmed by real data
 Lower concentration: prelude to stickiness / smeariness 

[Hotz et al 2013] [Huckemann & Eltzner 2019, 2020]

Curvature at a point distribution: deviation from Euclidean CLT?
 Distributional torsion: lim

𝑛𝑛→∞
n Bias(𝑥̅𝑥𝑛𝑛) ≅ 1

6
𝔐𝔐2:𝛻𝛻𝛻𝛻:𝔐𝔐2 + 𝑂𝑂 𝜖𝜖5

 Distributional curvature: lim
𝑛𝑛→∞

n Cov 𝑥̅𝑥𝑛𝑛 − Cov 𝑥𝑥 ≅ 1
3
𝔐𝔐2:𝑅𝑅:𝔐𝔐2 +𝑂𝑂 𝜖𝜖5

 Differs from Efron’s “statistical curvature” of a family of distributions [Efron, AoS 1975]
 Relation to coarse [Ollivier 07,09] & synthetic Ricci curvatures [Sturm 06 Lott-Villani 09]?



The G-Statistics group
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convergence of first-order methods 
for Bures-Wasserstein barycenters 
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Averaging on non-Euclidean spaces
For a metric-measure space , the barycenter problem asks
(X, dX, P)

min
b∈X ∫ d2

X(b, x)dP(x)

Existence and uniqueness?


Statistical convergence?


Algorithms?


[Fréchet ’48, Karcher ’77]



Suppose  is complete, geodesic metric space. For each 
, let


Then  is -geodesically convex for all  if and only 
if  is non-positively curved (in sense of Alexandrov)

(X, dX)
P ∈ 𝒫2(X, dX)

FP 1 P ∈ 𝒫2(X, dX)
(X, dX)

FP(b) := ∫ d2
X(b, x)dP(x)

Barycenters and geometry  X

 γ(0)

 γ(1)

 γ(t) x

FP(γ(t)) ⩽ (1 − t)FP(γ(0)) + tFP(γ(1)) −
1
2

t(1 − t)d2
X(γ(0), γ(1))

[Sturm ’03]



Suppose  is an NPC space. For each , let(X, dX) P ∈ 𝒫2(X, dX)

FP(b) := ∫ d2
X(b, x)dP(x)

Barycenters in NPC spaces  X

 γ(0)

 γ(1)

 γ(t) x

[Sturm ’03, Bhattacharya, Patrangenaru ’06, Le Gouic, 
Paris, Rigollet, and Stromme ’22, Brunel, Serres ’23]

Then:


Existence and uniqueness


Statistical convergence


Algorithms



Suppose  is a NNC space, so(X, dX)

d2
X(γ(t), x) ⩾ (1 − t)d2

X(γ(0), x) + td2
X(γ(1), x) −

1
2

t(1 − t)d2
X(γ(0), γ(1)) .

Barycenters in NNC spaces

Then:


Existence and uniqueness?


Statistical convergence?


Algorithms?

 X
 γ(0) γ(1)

 γ(t)

 x

[Bhattacharya, Patrangenaru ’06, Afsari ’11]



Suppose  is a NNC space, so(X, dX)

d2
X(γ(t), x) ⩾ (1 − t)d2

X(γ(0), x) + td2
X(γ(1), x) −

1
2

t(1 − t)d2
X(γ(0), γ(1)) .

Barycenters in NNC spaces

Then:


Existence and uniqueness?


Statistical convergence?


Algorithms?

 X
 γ(0) γ(1)

 γ(t)

 x

[Bhattacharya, Patrangenaru ’06, Afsari ’11]

Can restrict to a small ball, but 
that isn’t completely satisfying



The Wasserstein space

Endows space of probability distributions with a 
Riemannian-like geometry:


• Tangent spaces, exponential maps, geodesics, 
calculus 

• Fundamental in PDEs, functional inequalities, 
geometry of non-smooth spaces


• Fundamental for sampling algorithms

W2(ℝd) := (𝒫2(ℝd), W2)W2(μ, ν) := min
π∈Π(μ,ν) (∫ ∥x − y∥2dπ(x, y))1/2

[McCann ’97, Jordan, Kindelehrer, and Otto ’98, Otto and Villani ’00, Otto 
’01, Sturm ’06, Lott and Villani ’06, Ambrosio, Gigli, and Savare ’08]



The Wasserstein space is NNC

The Wasserstein space  is non-negatively 
curved:

W2(ℝd)

W2(ℝd) := (𝒫2(ℝd), W2)W2(μ, ν) := min
π∈Π(μ,ν) (∫ ∥x − y∥2dπ(x, y))1/2

[Otto ’01, Ambrosio, Gigli, and Savare ’08]

W2
2(γ(t), μ) ⩾ (1 − t)d2

X(γ(0), μ) + tW2
2(γ(1), μ) −

1
2

t(1 − t)W2
2(γ(0), γ(1)) .



Wasserstein barycenters

Given P ∈ 𝒫(𝒫2(ℝd))

min
b∈𝒫2(ℝd) ∫ W2

2(b, μ) dP(μ)

AC’11, CD’14, CFTR’16, AC’17, LGL’17, ZP’19, 
KSS’19, ALP’18, S’03, O’12, Y’16, S’18, CCS’19, 
CAD’19, ABA’21, ABA’21, BVFR’22, ABA’22, CDM’22, 
JRE’23, +

• Graphics


• Bayesian statistics


• Transfer learning


• Trajectory reconstruction


• …
[Solomon et al ’15]



Wasserstein barycenters

Surprisingly, the NNC is rather benign:


Existence and uniqueness (under mild conditions)


Statistical convergence (under various conditions)


Algorithms (this talk)

 X
 γ(0) γ(1)

 γ(t)

 x

[Agueh and Carlier ’11, Kroshnin, Spokoiny, Suvorikova ’19, Ahidar-
Coutrix, Le Gouic, Paris ’20, Carlier, Delalande, Merigot ’22]

Given , solveP ∈ 𝒫(𝒫2(ℝd))

min
b∈𝒫2(ℝd) ∫ W2

2(b, μ) dP(μ)



First-order methods for Wasserstein barycenters

(Cuturi and Doucet ’14): gradient descent using the Wasserstein geometry!


∇W2
FP(b) = ∫ (∇φb→μ − id) dP(μ), bt+1 = ((1 − ηt)id + ηt ∇W2

FP(bt))#bt

How to solve


min
b∈𝒫2(ℝd)

FP(b) := ∫ W2
2(b, μ) dP(μ)?

[Cuturi and Doucet ’14]



Curse of dimensionality for Wasserstein space
Unfortunately, this won’t work in high dimensions without 
further assumptions:


Computational curse of dimensionality: Altschuler and 
Boix-Adsera showed Wasserstein barycenters are NP-hard


Statistical curse of dimensionality: Discretization with  
samples entails unavoidable statistical error 

n
n−1/d

[Dudley ’69, Niles-Weed and Rigollet ’21, Altschuler, Boix-Adsera ’22]

OT

Parametric 
classes


Non-optimal 
couplings


Curse of dimensionality



Restricting to Gaussians
Multivariate Gaussians form an especially well-
behaved subset of :


• Totally geodesic subset (i.e. convex)


• Closed form for distances


• Closed form for geodesics

W2(ℝd)

OT

Parametric 
classes


Non-optimal 
couplings


Curse of dimensionality

W2
2(Σ0, Σ1) = tr(Σ0) + tr(Σ1) − 2tr((Σ1/2

0 Σ1Σ1/2
0 )1/2) .

Σt = (1 − t)2Σ0 + t2Σ1 + t(1 − t)(Σ0Σ0→1 + Σ0→1Σ0)

Σ0→1 := Σ−1/2
0 (Σ1/2

0 Σ1Σ1/2
0 )1/2Σ−1/2

0



The Bures-Wasserstein manifold
A non-negatively curved Riemannian manifold on the 
set of positive-definite matrices





Many connections and uses:


• theory of deep learning/implicit regularization


• Pre-conditioner for OT in applications


• SDP solvers

𝔹d := ({Σ ∈ ℝd×d : Σ = ΣT, Σ ≻ 0}, W2)

[Bures ’69, Knott, Smith ’94, Burer, Monteiro ’03, Burer, Monteiro ’05, 
Alvarez-Esteban et al ‘16, Bhatia, Jain and Lim ’19, Kroshnin, Spokoiny, 
Suvorikova ’19]



Can explicitly compute the gradient of the BW 
barycenter functional

Riemannian gradient descent for BW barycenters

Converges quickly in practice

Σt+1 = (I − ηt ∇W2
FP(Σt))Σt(I − ηt ∇W2

FP(Σt)) t = 1,…, T .

∇W2
FP(Σt) = ∫ Σ−1/2

t (Σ1/2
t ΣΣ1/2

t )1/2Σ−1/2
t dP(Σ) .

Plot of convergence vs iterations 
from Alvarez-Esteban et al ’16 

And the GD update with step-size ηt

[Alvarez-Esteban et al ‘16]



Non-convexity of BW barycenter functional



Dimension-free, global, linear rates for GD

Theorem. (CMRS’20, ACGS’21) 
Suppose  is supported on centered 
Gaussians with eigenvalues in the range 

. Then GD with step-size 
 converges as


P

[α, β]
ηt := α/2β

F(ΣT) − F(Σ⋆) ⩽ exp( −
3T
64

⋅ (α
β )5/2) ⋅ (F(Σ0) − F(Σ⋆)) .

[Chewi, Maunu, Rigollet, Stromme ’20, 
Altschuler, Chewi, Gerber, Stromme ’21]

Σt+1 = (I − ηt ∇W2
FP(Σt))Σt(I − ηt ∇W2

FP(Σt))



Dimension-free, global, linear rates for GD

Theorem. (CMRS’20, ACGS’21) 
Suppose  is supported on centered 
Gaussians with eigenvalues in the range 

. Then GD with step-size 
 converges as


P

[α, β]
ηt := α/2β

F(ΣT) − F(Σ⋆) ⩽ exp( −
3T
64

⋅ (α
β )5/2) ⋅ (F(Σ0) − F(Σ⋆)) .

[Chewi, Maunu, Rigollet, Stromme ’20, 
Altschuler, Chewi, Gerber, Stromme ’21]

Σt+1 = (I − ηt ∇W2
FP(Σt))Σt(I − ηt ∇W2

FP(Σt))

In fact, this holds for the average 
condition numbers

β := (∫ λmax(Σ)dP(Σ))2 .α := (∫ λmin(Σ)dP(Σ))2



Dimension-free, global rates for SGD

Theorem. (CMRS’20, ACGS’21) 
Suppose  is supported on centered 
Gaussians with eigenvalues in the range 

. Then


P

[α, β]

𝔼[W2
2(ΣT, Σ⋆)] ⩽ (4β

α )7
2 ⋅

σ2

T
.

Σt+1 = (I − ηtSt)Σt(I − ηtSt)

St = Σ−1/2
t (Σ1/2

t XtΣ1/2
t )1/2Σ−1/2

t

[Chewi, Maunu, Rigollet, Stromme ’20, 
Altschuler, Chewi, Gerber, Stromme ’21]



Proof strategy

[Otto, Villani ’00, Karimi, Nutini, Schmidt ’16]

The NNC of Bures-Wasserstein space makes the 
barycenter functional non-convex, but is also 
automatically makes it 1-smooth:


It is known from convex optimization that under 
smoothness, strong convexity can be weakened to 
a quantitative condition known as a Polyak-
Łojasiewicz inequality

FP(Σ1) ⩽ FP(Σ0) + ⟨∇FP(Σ1), logΣ0
(Σ1)⟩Σ0

+
1
2

W2
2(Σ0, Σ1)



A Polyak-Łojasiewicz (PL) inequality

[Otto, Villani ’00, Karimi, Nutini, Schmidt ’16]

PL inequalities are a very useful tool to make the 
following statement quantitative:


“First-order critical points are global optima”


We say a function  satisfies a PL 
inequality with constant 


PL inequalities are a weak form of strong convexity 
that still imply similar optimization results

f : X → ℝ
CPL

f(x) − inf
x∈X

f(x) ⩽ CPL∥∇X f(x)∥2
x

f(x)



A Polyak-Łojasiewicz (PL) inequality

[Otto, Villani ’00, Karimi, Nutini, Schmidt ’16]

PL inequalities are a very useful tool to make the 
following statement quantitative:


“First-order critical points are global optima”


We say a function  satisfies a PL 
inequality with constant 


PL inequalities are a weak form of strong convexity 
that still imply similar optimization results

f : X → ℝ
CPL

f(x) − inf
x∈X

f(x) ⩽ CPL∥∇X f(x)∥2
x For the OT crowd: log-

Sobolev is a PL inequality 
while displacement convexity 
is strong convexity

f(x)



A variance (or quadratic growth) inequality

[Otto, Villani ’00, Sturm ’03, Karimi, Nutini, Schmidt ’16]

Proposition. (CMRS’20) Then we have a variance 
inequality for all  Σ ≻ 0

1
2

W2
2(Σ, Σ⋆) ⩽

β
α

(FP(Σ) − FP(Σ⋆))

f(x)
Suppose  is supported on centered Gaussians with 
eigenvalues in the range , and

P
[α, β]

FP(Σ⋆) = min
Σ≻0

FP(Σ) := ∫ W2
2(Σ, Σ′￼)dP(Σ′￼) .



PL inequality for the BW barycenter functional

Proposition. (CMRS’20) If  also has 
eigenvalues in the range  then

Σ
[α, β]

[Agueh and Carlier ’11, Chewi, Maunu, Rigollet, Stromme ’20]

FP(Σ) − FP(Σ⋆) ⩽ 2( β
α )2∥∇W2

FP(Σ)∥2
Σ

Suppose  is supported on centered Gaussians with 
eigenvalues in the range , and

P
[α, β]

FP(Σ⋆) = min
Σ≻0

FP(Σ) := ∫ W2
2(Σ, Σ′￼)dP(Σ′￼) .



Trapping iterates
Proposition. (ACGS’20) If  also has 
eigenvalues in the range  then

Σ
[α, β]

FP(Σ) − FP(Σ⋆) ⩽ 2( β
α )2∥∇W2

FP(Σ)∥2
Σ

[Massart, Hendricx, and Absil ’19, Chewi, Maunu, Rigollet, Stromme ’20]

Want this to hold along the optimization 
trajectory, else the PL constant will 
blow up Σ0

Σ1
Σ2

{λmin ⩾ α}

{λmin = 0}



Trapping iterates
Proposition. (ACGS’20) If  also has 
eigenvalues in the range  then

Σ
[α, β]

FP(Σ) − FP(Σ⋆) ⩽ 2( β
α )2∥∇W2

FP(Σ)∥2
Σ

[Massart, Hendricx, and Absil ’19, Chewi, Maunu, Rigollet, Stromme ’20]

Want this to hold along the optimization 
trajectory, else the PL constant will 
blow up Σ0

Σ1
Σ2

{λmin ⩾ α}

{λmin = 0}

Intuitively, we want to keep the 
iterates in a part of the manifold with 
bounded curvature



Trapping iterates: SGD
In fact, the functionals  and  are 
geodesically convex


Enough to analyze SGD, since each new iteration 
moves along a geodesic to a point in 

− λmin λmax

supp(P)

[Agueh, Carlier ’11, Bhatia, Jain, and Lim ’19]

{λmin ⩾ α}

{λmin = 0}

ΣSGD
t+1 = expΣSGD

t
(2ηt logΣSGD

t
(Xt))

Σ0

Σ1
Σ2



Trapping iterates: SGD
In fact, the functionals  and  are 
geodesically convex


Enough to analyze SGD, since each new iteration 
moves along a geodesic to a point in 

− λmin λmax

supp(P)

[Agueh, Carlier ’11, Bhatia, Jain, and Lim ’19]

{λmin ⩾ α}

{λmin = 0}

ΣSGD
t+1 = expΣSGD

t
(2ηt logΣSGD

t
(Xt))

However, this isn’t enough for GD, since it 
moves along generalized geodesics:

ΣGD
t+1 = expΣGD

t (2ηt ∫ logΣGD
t

(X)dP(x))

Σ0

Σ1
Σ2



Trapping iterates: GD
Surprisingly,  is not convex along 
generalized geodesics!

− λmin
{λmin ⩾ α}

{λmin = 0}
[Agueh, Carlier ’11, Altschuler, Chewi, Gerber, Stromme ’21]

ΣGD
3

ΣGD
0

ΣGD
1ΣGD

2



Trapping iterates: GD
Surprisingly,  is not convex along 
generalized geodesics!

− λmin
{λmin ⩾ α}

{λmin = 0}
[Agueh, Carlier ’11, Altschuler, Chewi, Gerber, Stromme ’21]

We show this is an artifact of continuous vs. 
discrete time plus non-smoothness of 


Ultimately show a weaker statement: for all times 


λmin

λmin(ΣGD
t ) ⩾ α/4

{λmin ⩾ α/4}

ΣGD
4

ΣGD
3

ΣGD
0

ΣGD
1ΣGD

2



Open problems
(Ahidar-Coutrix, Le Gouic, Paris ’20): a geodesic  
is -extendible if there exists a constant speed extension 

 such that .


Suppose that  and . If  has a 
barycenter  such that for all , the geodesic  is 

-extendible, then does  obey a PL inequality with 
?


Does this imply fast rates for the empirical barycenter?

γ : [0,1] → (X, dX)
(λin, λout)

γ̃ : [−λin,1 + λout] → (X, dX) γ̃ |[0,1] = γ

P ∈ 𝒫2((X, dX)) λin, λout > 0 P
b⋆ x ∈ supp(P) γb⋆→x

(λin, λout) FP
CPL = CPL(λin, λout)

[Ahidar-Coutrix, Le Gouic, Paris ’20, Le Gouic, Paris, Rigollet, Stromme ’22]
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