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k-means quantization/clustering

Let P be a probability measure on R4, X ~ P random vector
k-means clustering/quantization problem:

D(Q) = D(Q; P) := Emin|X — af? i
(Q) (@; P) ggg! al R

@ Clustering: clusters are Voronoi cells
Vi(Q) = {z €R: v — aif = minjz — o[}, Q = (a1, ., ax)

e Quantization: Q = (ay,...,ax) is a “codebook”,
i(x) = argmin|z — a;| is a “code”
j=1,...k

Some history:
o Steinhaus (1957): division of a body in R?
@ Lloyd (1957): algorithm for signal quantization

@ MacQueen (1967): “k-means” name
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Example: color quantization
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k-means in metric spaces

Let P be a probability measure on a metric space (X,d), X ~ P

D = D(Q; P) = Emind*(X,a) - min
(@) =D(Q; P) min (X, a) o

Existence of solution: E d?(X,x() < co for some zg € X; there is a
weak topology 7, on X s.t. any closed ball B,.(z) is compact in 7,

Examples: separable reflexive Banach spaces, Wasserstein spaces on R%,
Riemannian manifolds
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Statistical setting

Given an i.i.d. sample X = (Xy,...,X,,) ~ P we want to construct an
empirical quantizer Q C X, |Q| =k

Measure of quality: excess distortion D(@) — D(Q*), where Q* is an
optimal quantizer

Our goal is to get @ with good PAC bounds:

P{D@) - D(Q") > (n.6)} <4
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ERM consistency

Risk minimization problem = empirically optimal quantizer:

~

@, = argmin mlnd (Xi,a)
" qcxiqi= kzae@ Z

Strong consistency (Pollard, 1981): let X3, X5, -+ ~ P be an i.i.d.
sequence in R? and E|X|? < oo; then

D(Qn) — D(Q*) 2250 as n — oo

Under additional assumptions \/ﬁ(@n — @) is asymptotically normal
(Pollard, 1982)

Q: What about non-asymptotic rates of convergence?
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ERM rates: bounded support in Hilbert space

Let X' be a separable Hilbert space. Assume || X|| <T a.s.
Non-asymptotic bounds on the excess distortion w.p. at least 1 — ¢:
o Linder, Lugosi, and Zeger (1994): X = R¢,

zx©0—4x9w5zﬂ<¢hﬂfn%,¢maua>

n

@ Biau, Devroye, and Lugosi (2008):

- ( - (5)

o Fefferman, Mitter, and Narayanan (2016):

D@M—D@ﬂﬁT%¢M%?)+¢MMMv

n
@ Appert and Catoni (2021):

D(Qn) — D(Q*) S T? (\/klogz(n/k) logk 10g(1/5)>

n n
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ERM rates: light tails

Cadre and Paris (2012): if || X || is sub-exponential, then with probability
atleast 1 -0 -0 <e‘m1'5>

oo
D(@Ga) - DQY) < B(P)” 1;5

Alexey Kroshnin Robust k-means 11-13 Oct. 2023, ENSAE 8/26



Questions

@ Heavy-tailed distribution: what if P has only two moments?
@ Outliers: what if the sample is contaminated?

© (Sub-)optimality of ERM: can we do better?
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Goals

Construct a quantizer @ that
© handles general metric space
@ is robust to heavy-tailed distributions/outliers

© has a sub-Gaussian rate even for heavy tails
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Counterexample

Take X =R, k=2

Define the distributions P,,: P, ({0}) =1 -1, P,({y/n}) = 2.
Then Ex~p,|X|? =1 and D(Q*; P,) = 0.

Let Xy,..., Xy, ~ P,. Then with constant probability
X;=-=X,=0, hence @ = {0}, D(Q; P,) = 1.

Problem: there is too small cluster
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Minimal cluster assumption

Voronoi cells (clusters) of Q = {a1,...,ax} C X:

Vi(Q) = {z € X :d(z,a;) < d(z,a5), 1 < j <1,
d(z,a;) < d(z,a5),1<j< k:}

Recall: let |supp P| > k and Ed?(X, o) < oo, then there is
0< Pmin < min; P(W(Q*))

Suppose we are given a lower bound ppyin > 0 such that npyy, > 1 =
no “invisible” cluster. Our empirical quantizer and bounds will depend on

Pmin-

Alexey Kroshnin Robust k-means 11-13 Oct. 2023, ENSAE 12 /26



Approaches to robust M-estimators

@ Robust loss: ¢1, Huber loss, ...
@ Consensus: RANSAC, median of means, ...

@ Truncation: trimmed mean, ...
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Approaches to robust M-estimators: k-means

@ Robust loss: k-medians, information k-means (Appert and
Catoni, 2021)

e Consensus: MoM (Klochkov, Kroshnin, and Zhivotovskiy, 2021)

e Truncation: trimmed k-means (Cuesta-Albertos, Gordaliza, and
Matran, 1997)
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Trimmed constrained k-means

Trimming operator:

TU(K;P)::inf{/Ede:pEO,/dezl—n}, 0<n<l1

Given a confidence level 6 € (0,1) and a lower bound ppi, > 0 on the
mass of clusters, define a quantizer

Qi = argmin  T,(d*(,Q); Py)
QCX:|Q|=k
Pn(V:j(Q))mein/2

with n = 6%.
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Rate of convergence: finite-dimensional space

Let X = R%. If npmin > log(1/6), then with probability at least 1 — §

D) - DQ) < D(Q) ((bg k>\/ d+logh | \/ Log(1/9)

N Pmin N Pmin

2d+logk)

NPmin

+ (log k)
The same bound holds if
R
log N(Bgr(z),t) < dlog R eX,0<t<R,

where N (Bpg(x),t) is the covering number of the ball Br(z) C X

Cf. bounded case: % instead of T2Vk
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Rate of convergence: finite-dimensional space

Trimmed k-means:

D@w) - D(QY) < D(Q") (aog k>\/ d+logh | \/ log(1/2)

NPmin NPmin
d+log k
+(logk)2&)
NPmin
MoM k-means:
?) * dlogk log(1/6
D(@n) — D(Q°) S Ed?(x0, X) <\/ g +\/ g</>>
NPmin NPmin
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Rate of convergence: Hilbert space

Let X be a Hilbert space. Then with probability at least 1 — §

R oz n)2 o ogn)t
D(Qwr) = D(Q) £ D(Q") (il/fp—m).m * lfzgi{f) i (i’bfmir)l )

MoM k-means:

D(@u) - D(Q") S EdP(r, X) (<1og n>\/ — \/ el ) )

Idea: Johnson—Lindenstrauss lemma
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Rate of convergence: functional spaces
Let with some v >0, A > 1
R\" R
log N (Bg(z),t) < A n log?, reX,0<t<R

Examples: Sobolev space, Holder space, Wasserstein space with a majorant

Then with probability at least 1 — §

Y (- IO R

D@0)-D(@) 5, § D(@) (/HBE 1 [ ), =2
* ogn)t—7/4 1/ o 5

D@) (e (407 4 RO )
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Outliers

Suppose that instead of X we observe an (adversarially) contaminated
sample X’. If we are given an upper bound n, > | X"\ X/, then we set

ol glos(1/9)
' n n

NPmin 2, Mo = no “wiped out” cluster, the bounds hold with

log(1/8) % +log(1/6)
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Lower bounds: bounded case

Antos (2005): for any d,k,n € N, k < n, and empirical quantizer @ there
is a distribution P on B;(0) C R? such that

BD(@) - D(@) 2 k4 [E 2 pgry /b

n

No contradiction with upper bounds: ppin < %l
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Lower bounds: puin

Let X =R, k =4. For any @ there is a distribution P on R such that
with probability at least ;11

v
9
<

D(Q) - D(Q")

- ~
., ~
2 T

~ .

N

(1=0)p/4 (1-0)p/4 1=p (1+9)p/4 (1+9)p/4
¢ > ~- = ~ = ~- = >
—2/p " =1]p 0 1//p 2]p
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Ingredients of the proof

o With high probability @tr belongs to a nice class

@ Bound on a squared loss for a functional class with finite L.,-diameter
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Class of quantizers

Due to the minimal cluster assumption, with high probability

k

k *, *
S ), S e, G < ) < D@
=1

i=1 pmlIl pIIllIl

where Q* = (aj, ..., a}), @tr = (a1,...,ar). Therefore, @tr € Qk,

Qk—{QCX Q| =k, QCUBRS () QCUBRS /(s))}7

where m, 7’ are permutations and
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Master bound

Let F be a functional class such that for some M > 0

If—gl<M VfgeF

Suppose

1 o
E,(F) = sup inf -|——/ log Noo (F, t, P, dt><oo
F)=swint (84 = [ Ve Mu(F R
Then with probability at least 1 — § for all f € F

P2 =Pf2 < Ty(f* Pa) =Ty (f2: P)+ VP2 (En(f )+ M 1og73/5)

log1/0
n

+ EX(F) + M?

where f, = argmin .z P f?
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Combining ingredients

Consider
Fr={d(-,Q) : Q € Qi}
Then
D(Q*
1 = gllien S | 22
pl’l’lln
/ V108 Noo (Fio t, Pp) dt < M(logk)?’/2
B Pmin
0o k
+/ log N (Bg,,t)dt
B s=1

The master bound yields the result after estimating the Dudley integral
gn(fk)
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1 What is Hess-Schrader-Uhlenbrock inequality?

Hess-Schrader-Uhlenbrock ('77,’80), Simon (’79):
(M,g): a cpt R-mfd M = (), Ric > K

— |PMw| < e *Pw|, w € T(T*M).

PHE = etA"": L2_semigroup of de Rham-Hodge-Kodaira
Laplacian AHY = —(dd, + d.d).
Ouhabaz (’99), Shigekawa ('97,’00): cpt (M, g) cvx OM.
Hsu ('02): cpt (M,g) OM, Giineysu ('17),
Driver-Thalmaier (01), Elworthy-Le Jan-Li('99): non-cpt



2 Theory of Dirichlet spaces

(D, H»2(R%)): classical Dirichlet integral:

D(f.9) = | (VI@), Vg@)de,  fig€ H®)

= [ (~Af@)g(@de  f.g€ CHRY).

X = (Q, B;, P,): Brownian motion on I][_%d: ,
[z—y|
P.(B; € A) = / x,y)dy = / e 2t d

— T'tlA(CB) ppm “etA/z]_A(ZE)”

1
: L*-semigroup ass. to (ED’ Hl’z(IR{d)> :



(E,D(E)): Dirichlet form on L?(M;m) iff
(i) non-negative symmetric bilinear form on L?(M;m),
whose domain D(E) is desely defined in L?(M;m)
(ii) D(&) is complete w.r.t. Ei/z-norm,
where £,(f,g) := &(f,9) + (f,9)m for f,g € D(E).
(iii) For f € D(E), f*:=0V fAl1le€ D(€) &
E(f %) < E(F5 f)-

If (€,D(&)) is (quasi-)regular, °X = (Q, X}, P,) s.t.
T:.f(x) = E.[f(X}:)] m-a.e. for f € L*(M;m)NB(M).



Fukushima ('76), Albeverio-Ma-Rockner (°'91,792,’93)

(From Wikipedia & Personal HP)

See Fukushima-Oshima-Takeda ('10), Oshima (’'13),
Ma-Rockner ('92)



3 What is tamed Dirichlet space?

Roughly speaking, tamed Dirichlet space is a

e strongly local Dirichlet space (€, D(E)) on L*(M;wm)
& X = (92, Xy, Py): m-sym. diffusion process on M.

e (E,D(E)) has a lower bound « of Ricci curvature in

distribution sense: weak Bakry-Emery condition.

e Kk := kT — Kk : signed measure s.t. k™ has bounded

potential Uk, 2k~ is of (extended) Kato class.



The notion of tamed Dirichlet space was proposed by
Erbar-Rigoni-Sturm-Tamanini ('22) and its vector space

calculus was developed by Braun ('22+):

(From Wikipedia & Personal HP)

Very nice framework!, but sub-Riem. mfds, ®)-model,

super process of immigration models are not included in.



4 Precise definition of tamed Dirichlet space

(M, T): top. Lusin space
m: o-finite Borel measure with full support
(f,9g)m: L*-inner product
(E,D(&)): strongly local quasi-regular
Dirichlet form on L?(M;wm)
(P;)¢>0: Markov L?-semigroup < (€, D(E))
X = (2, X, P,): m-sym diffusion process s.t.
P,f = E[f(X;)] m-a.e. for f € L*(M;m) N B(M)



tit.gy = I'(f,g)dm, f,g € D(E): (signed finite) energy
measure E(f,g) = N(f,g)(M) — fMF(fa g)dm.

k € S(X), k = kt — k7; Jordan-Hahn decomposition.

HE. [qu < 00 /'t > 0 <= kT € Sp(X).

‘ O

. e 1 _
%1_{% ‘E, {At ”|OO < > < 2k~ € Sgx(X).

Define (E%%, D(E%*)) by

£2(f,g) == £(f,g) + 2 / fd,
M

frg € D(&*) = D(¢&).



Then this is a closed bilinear form bounded below s.t.

g >0,C >0

CT&1(f) < EX(f) < CE&(f) forall fe D(E).

Here £2°(f,g) = €**(f,9) + (S, 9)m and
gl(fag) — S(f,g) + (fag)m-



Consider a CAF A? := A®" — A* (= Kt if k = Km)

and Feynman-Kac semi-group (p;*):>0 by
p;f(x) := E;[e *4 f(Xy)],  f € By(M).

Then (p?’{fag)m — (fapf’{g)mv f,g9 € By(M). More-

over, (p;*):>o coincides with (P2*);>o on L*(M;m) as-
sociated to (€%, D(E%%)). Under such conditions, the
stochastic semi-group (pf):>0 can be extended a semi-
group Pf on LP(M;wm) for each p € [1,+00]. Let A**

be an L?-generator associated to (£, D(&E%F)).



B8R 4.1 (Tamed Dirichlet space, i.e. BEx(x, N))

k1, k= as defined before. Fix N € [1,+o0].

(M, E,m) or M is said to satisfy 2-Bakry-|§mery condi-
tion (BE;(k, IN) in short), if the following holds:

For Vf € D(A) with Af € D(E) & "¢ € D(A**) N
L®(M;wm), with A%*¢ € L>°(M;m),

1 2K . i 2
> | r()a*sdm— [ or(s,apdm > [ o(af)dm

When N = + o0, the right-hand vanishes.



k1, k= as defined before. (M, &, m) or simply M satis-

fies BE;(k, IN), we call (€, D(&€)) Tamed Dirichlet space.

Thm 4.1 ( Erbar-Rigoni-Sturm-Tamanini ('22))

k1, Kk~ as defined before. Then BE;(k, 00) < GE{(k, 00).

GEi(k,00) : VI(Bf) < PEVI(f), feDE). (1)

Here PF associates to pfh(x) := E,[e” 4T h(X,)]. More-

over, the following Test(M ) forms an algebra.
Test(M) :={f € D(A) N L>*°(M;m) |

L'(f) € L™(M;wm),Af € D(&)}. (2)



IBX 4.1 (Examples of Tamed Dirichlet spaces)
e RCD(K, N)-spaces,
e Abstract Wiener space (B, H, ),

e cpt R-manifolds with boundary, ERST (’22),

¢ Almost smooth metric measure space with BE;-condition,

This is not an RCD-space, Honda (’'18),

e Infinite particle systems on (M, g) with Ric > K with-

out interaction under Poisson measure: Albeverio

-Kondratiev-Rockner ('98), Dello Schiavo-Suzuki (’224).



5 Results

Thm 5.1 (Hess-Schrader-Uhlenbrock inequality)
We have the following: Recall pth(x) = E,[e 4t h(X})].

(1) For Yw € L>(T*M) and o > C,,
R¥Ku| < RF|w| m-ae 3)
(2) For Yw € L?(T*M) and every t > 0,

|PPRw| < PFlw| m-ae. (4)



888 5.1 (Cy-property of (P1%);>¢ on LP(M;m))
Suppose p € (2,4 o0, or kT € Sg(X) and p € [1, +00].

Then the heat flow (P"%);>o can be extended to a semigroup

on LP(T*M ) and and for each ¢ > 0
| P wl| orany < C(k)e“ |||, w € LP(T™M).

Moreover, if k= € Sk (X) and p € [1, 4+oc], then (PtHK)tzo

is strongly continuous on LP(T*M), i.e., (P/™)¢>0 is a Co-
semigroup on LP(T*M ), and further (P™*);>¢ is weakly* con-

tinuous on L (T*M).



Thm 5.2 (Esaki-Xu-K (23+)) The Riesz operator R, (A)
defined by Ro(A)f := T'((a — A)"2f)% is bounded on
LP(X;m) under k~ € Sk (X) and p € [2, +00.

IBX 5.1 (New examples)

e a class of R-mfd with boundary s.t. kK = kv + £o, v := vol,,
o: surface measure on OM of Kato, Ric > k: Kato function,

£ is a lower bounds of second fundamental form on OM.

e Configuration space (Y, &Y, 7r) without interactions over (M, g)

having Ric > K.



s Recent known results

Braun ('22): [Thm 5.1 & @8R 5.1 are proved for
RCD(K, o©). Note that abstract Wiener space (B, H, )

(satisfying CD(1, o0) by Fang-Shao-Sturm ('10)) is not
an RCD(1, co)!, so not included in this setting.

Braun ('22+): [Thm 5.1 is proved for tamed Dirichlet
space under the that “k € L] (M;m) s.t. K = km and

|klm € Sgr(X) and K € Rs.t. k> K on M.
(B, H, i) is included in this setting.



7 Vector space calculus over tamed space

Vector space calculus was established by Braun ('22+4),
which was a natural extension of the vector space calcu-
lus for RCD-space developed by Gigli('18).

The proof for Kk = Km is easy. New point is that
Kk iIs not necessarily of constant nor of function! This

causes another technical difficulty.



So you can follow the proof below for

(M, g): smooth Riemmannian mfd with M # (

n := dim(M), b = vol,, Ric, > k(x)g,
k(x): Kato class function on M

o: surface measure on O M of Kato class

£: lower bound of second fundamental form

—> BE;(k,n) with kK = kv + fo.

But this concrete expression is not so important in the

proof. Essential point is the (extended) Kato class con-

dition for 27!



8 Sketch of proof

Lem 8.1 (Braun('22+)) For X € HY*(T M),
V| X|| < |VX|us: Kato’s inequality.

Lem 8.2 X € H“?(T'M) implies | X| € D(E) and

E(X],|X|) < Ecov(X, X) < 0. (5)

For f € D(&) N L>®°(M;wm), with fX € H"*(TM), we
have f|X| € D(&) and

E(1X], £1X|) < Ecov(X, £X). (6)



Proof. The proof of (5) can be directly deduced from
Lem 9.1. Next we show (6). Assume fX € HY“*(T M)
for f € D(&) N L>*(M;m),. By (5), we have f|X| €
D(&E). Moreover, due to Braun ('22+4),

|IPPX| < P|X| wm-ae.

we have

(I = P)IX], FIX D) 2y < (T — PPYX, £X) p200nny-

Divided by ¢ > 0 and letting ¢ — 0, we obtain (6).




Lem 8.3 Take w € HY?(T*M)(= D(EMR)). Then |w| €
D(E) and

E"(|lwl, lw]) < EM(w,w). (7)

Proof. w € HY2(T*M) implies w* €¢ HY2(TM) and
w| = |w!| € D(E). Then

(5) -
E(lw]s lw]) = E(|wf], [wf]) < Ecov(wF, wf)

S 8HK(w9w) T <’/"’7 |w|2>7

which implies the conclusion. The last inequality is due

to Braun ('22+).




Lem 8.4

(i) w e HY2(T*M) N L>®(T*M) & f € D(E) N L®°(M;m)
= fw € HY?(T*M) N L (T*M).
(i) w € HY?(T*M) and f € Test(M) = fw € HY*(T*M).
Proof. The following are due to Braun ('22+):
(i) X € HY"*(TM)NL>®(TM) & f € D(E)NL>®(M;m)
= fX € H"(TM) N L=(TM).

(i) X €e HY*(TM) & f € Test(M) = fX € HY(T M)




Lem 8.5 Take w € HY?(T*M) and f € Test(M)_.
Then flw| € D(E®) = D(&) and

E"(|wl, flw]) < M (w, fw). (8)

Proof. By |[Lem 8.4, we have fw € HY(T*M) &
flw| € D(E). By Braun('22+), we have

Ric(w’, fw')(M) = EM8(w, fw) — Ecov(wh, fwh). (9)

Here the LHS is the total mass of Ricci curvature mea-

sure defined by Braun ('22+).



By Lem 8.2, we then have

E¥(lwl, flw]) = E(Jw], flwl) + (k, flw|*)
< Eic:OV("'-’lja fwﬁ) + (K, f|w|2>

2 EMK (w, fw) — Ric"(w, fw?) (M)

= &M% (w, fw) — / FdRic®(wh, wh)
M

< &M (w, fw).

IB8H 8.1 Take w € D(A"™)NL>*(T*M) and f € D(E)N
L*(M;m),. Then fw € HY*(T*M), flw| € D(E) N
L°°(M;wm), and (8) hold.



Lem 8.6 Take w € D(A" ) N L>°(T*M). Then

> &(|wl,g) g € Test(M)..

(10)

Here we set w/|w| := 0 if w = 0.

Proof. By [Lem 8.3, we see |w| € D(E) N L>*®°(M;m).

For each ¢ > 0, we set |w|. := /|w|? + €2. Then we
see Ilc(le e D(E)NL>*®(M;wm). For g € Test(M)., we

set f:=g/|w|. € D(E)NL>®(M;m),.



We apply [88H 8.1 for f € D(E) N L>*°(M;m), so that
fw € HY*(T*M), f|lw| € D(E) and

W W
(—AHKw,g ) > | 1 b (wl, g)dm
|w|e L2(T*M) M |wle

w2
—|—<K,,g >
Wle

Letting € — 0, we obtain the conclusion.

Lem 8.7 Suppose w € HY*(T*M). Then

t 2
/ / [P w| dk~ds < oc. (11)
0o JM



Lem 8.8 For Yw € L?(T*M) and t > 0, we have

|IPPRw? < P72 |w|? wm-ae. (12)

In particular, for w € L?(T*M) N L>°(T*M) and o« > C,,,
C(k

/T 5

a —_—

W 00 (* .
CRH | Lo ()

Hence, R w € L>*(T*M) forw € L*(T*M)NL>(T*M).

Proof. We may assume x* = 0, because BE;(—k~, 00)

IR, wll ooy <

is satisfied. We may assume w € HY?(T*M).
Take g € Test(M),. and set g, R.g.



We now set a function F,, : [0,t] — R defined by
Fo(s) i= / P2 g nP1Gn| PP¥w|?dm.
M n
After a long calculation,

%Fé(s) <2 /

M

2
p1R,.p* go |PPEw| dr™

2
—2 [ (9" ,90) PLRA PFRw| dr™.  (14)

- 2
lim F/(s) < 2/ P go |PHXw| dr™
n—oo M

2
— lim 2 / P;" (Go np1 Ry | PEKw| dk™
M n

n—oo

< 0. (15)



By way of Monotone convergence theorem for f,(s) :=

infy>p, (—F;(s)), we get

t
lim [ F/(s)ds <O0.

Nn— 00 0

Thus,

lim ( / go nP1G,| PP w|*dm
M n

n—oo

—/ (P2* go) TLPlG |w|2dm)



Since li_>m ||Plnan—f||L1(M,m) = 0 for f - LI(M; m),

we have

/ 9ol PPEw[2dm < / (P2ga)|w|?dm = / 9o P2|w|dm.
M M M

Since ag, = aR.g € L°°(M;wm) weakly* converges
to g in L°(M;m) as « — oo and g € L*(M;m) N
L°°(M;wm) N B, (M) is arbitrary, we obtain (12).



Proof. of [Thm 5.1 Take g € Test(M),. Then, for
w € D(A™) N L>(T*M)

| (g —ag)widm — [ glolds
M M

> —/ g|AHKw —aw‘dm
M
by lLem 8.6, hence

(ol 9) < [ gl - A™w|dm.  (16)



Since Test(M), is dense in D(E),, (16) holds for any
g € D(),. By Lem 8.8, for « > C,, we can set
w := Ry ¢ D(A"™)NL>(T*M) for n € L2(T*M)N
L>°(T*M) and g := RFv with ¢ € L*(M;m),. Then

we see

(Y, |RI(;IK77|)m < (¢7R2|77|)m forany ¢ € LZ(M;m)

This implies that for « > C, and n € L*(T*M) N
Lo (T*M)

[RJ%n| < Rj|n| w-a.e. (17)



By approximation, we can deduce that (17) holds for gen-
eral n € L*(T*M).
From (17), we can obtain that |P/™n| < Pf|n| m-

a.e. for each t > 0 in view of the following observation:

prr =t (3) (®pA g e n(mim),

n—oo \ t

PP%g — 1lim (=) (RFX)"0 0 € L3(T*M).
¢ t

n—oo \ t



Thank you for your attention.
Nous vous remercions de votre
attention.

Vielen Dank fur lhre Aufmerksamkeit.



9 Vector space calculus over tamed space

In this section, we summarize the results by Braun ('22+).

This was a natural extension of the vector space calculus

for RCD-space developed by Gigli('18).

IB8E 9.1 (L”-normed L>°-module)
Given p € [1,+oc], a real Banach space (M, || - [|wm).
or simply, M is called an LP-normed L°°-module (over

(M, m)) if it satisfies



(a) a bilinear map - : L>*(M;m) X M — M satisfying

(b) a nonnegatively valued map | : |, : M — LP(M;m) s.t.

ray

<

3
|

fllvlm wm-a.e.,

[v]lae = [l|vlmllze(azim)s
for Vf,g € L®(M;wm) and v € M. If only (a) is sat-
isfied, we call (M, || - ||n) or simply M an L°°(M;wm)-

module.



We always assume that for "v € M, |v|,, is Borel. M
is called Hilbert module if is an L?-normed L°°-module,
in this case, the point-wise norm | - |, induces a point-
wise scalar product (-, ), : M X M — L'(M;m) which
is L°°-bilinear, m-a.e. nonnegative definite, local in both
components, satisfies the point-wise m-a.e. Cauchy-Schwa

inequality.



IDEf 9.2 (Dual module)
We can define the dual module M* by

M* := Hom(M, L' (M ; m))

and will be endowed with the usual operator norm. The
point-wise paring between v € M and L € M"* is de-
noted by L(v) € L'(M;wm). If M is LP-normed, then
M* is an Li-normed L°°-module, where p,q € [1, +0o0]

with 1/p+1/q = 1.



IDEf 9.3 (Tensor products) Let M; and M, be two Hilbert
module. We can define the tensor product M; @ M5 the
| - || v; @vc,-completion of the subspace that consists of all
A e MIOMY s.t. ||Allmyem, < co. Here M? (i = 1, 2)
is the L°-module induced by M; and M3 ® M is the al-

gebraic tensor product.

Def 9.4 (Exterior product) The exterior product AM is
defined as the completion w.r.t. || - [|an of the subspace

consisting of all w € AMP s.t. ||w|lan < 0.



Let (€, D(&)) be a quasi-regular strongly local Dirich-

let form on L?(M;m). We define the cotangent module

L?(T*M), i.e., the space of differential 1-forms that are

L?-integrable in a certain “universal” sense.

B8R 9.5 (Pre-cotangent module)

We define the pre-cotangent module Pcm by

(

Pcm : = { (fi, Ai)ien

\

(A;);cn Borel partition of M,

(fi)ien C D(E)e, Z/A ['(f;)dm < oo}

teEN



Moreover, we define a relation ~ on Pcm by (f;, A;)ien ~

(g;, B;)jen if and only if fAmBj L'(f;i — gj)dm = 0 for
Vi, 7 € N. The relation, in fact forms an equivalence re-
lation. The equivalence class of an element (f;, A;);cn €
Pcm w.r.t. ~ is denoted by [f;, A;]. The space Pcm/~

of equivalence classes becomes a vector space via the

well-defined operations
[fia Az’]"‘[gj? B]] e = [fz'"'gja Az M Bj]a )‘[fzv Az] = [)\fza Az]
(18)
for v[fi, Az], [gj, BJ] - PCHI/N and A\ € R.



Now we define the space SF(M;m) C L*°(M;wm) of
simple functions, i.e., each element h € SF(M;m) at-
tains only a finite number values. For [f;, A;] € Pcm/~
and h = 3._ a;1p, € SF(M;m) with a Borel partition
(B;) of M, we define the product h[f;, A;] € Pcm/~

> h(fi, Ai] := la;fi; Ai N By, (19)

where we set B; := () and a; := 0 for V5 > £. The defi-
nition is well-posed and that the resulting multiplication

is a bilinear map from SF(M;m) X Pcm/~ into Pcm /~



s.t. for V[f;, A;] € Pcm/~ and every h,k € SF(M;m)

(hEk)|fi, Ai] = h(Kk[fi, Ai]), L[ fi, As] = [ fi, Ai).

(20)
Moreover, the map || - |[p2(p«) @ Pem/~— [0, 00|
given by
”[fivAi]H%Z(T*M) .= Z/A I‘(fz-)dm < OO
1eN g

constitutes a norm on Pcm/~.



IDef 9.6 (Cotangent module)

We define the Banach space (L*(T*M), || - || t2(r+ar)) @s
the completion of (Pcm/~, || - |[r2(zeap)). L*(T*M) is
called cotangent module, and the elements of L?(T*M)

are called (differential) 1-forms.

Thm 9.1 (Module property) L*(T*M) is an L*-normed L°°-

module over M w.r.t. m whose point-wise norm | - |, satisfies,

for V[ f;, A;] € Pcm/~,

[fis Aillm = ¥ 14,T(f;)7 m-ae (21)

teN



IDEf 9.7 (L -differential) The LZ2-differential df of any
function f € D(E). is defined by

df = [f, X] € L*(T"M),

where [f, X] € Pcm/~ C L?*(T*M) is the represen-
tative of the sequence (f;, A;)icn given by f; := f,
A1 = X, .fz := 0 and Az = @ for v’i Z 2.

As usual, we call a 1-form w € L?(T*M) exact if, for

some f € D(E),,

w=df.



The L*-differential d is a linear operator on D(E).. By
(21), the L°°-module structure induced by m according

to Theorem 9.1,
df|m = T(f)? m-a.e.
holds for ¥ f € D(E)..

IDef 9.8 (Tangent module) The tangent module
(L*(TM), || - ||z2(rar)) or simply L*(TM) is

L*(TM) := L*(T*M)*

and it is endowed with the norm || - || L2(7pr)-



The elements of L?(T'M) will be called vector fields.

As before, the point-wise pairing between w € L?(T*M)
and X € L*(TM) is denoted by w(X) € L'(M;m),
X| € L*(M;wm)

and, by a slight abuse of notation,
denotes the point-wise norm of M. By Braun('22+)
L?(TM) is a separable Hilbert module. Furthermore, in
terms of the point-wise scalar product {-,-) on L*(T*M)
and L*(T M), respectively.



We can define the (Riesz) musical isomorphisms § :

L?>(T*M) — L*(TM) and b := #~! defined by
(W X) := w(X) =: (X", w) m-a.e. (22)

IDef 9.9 (L*-gradient) The L2-gradient V f of a function
f € D(E). is defined by

Vf := (df)".
Observe from (22) that f € D(E)., is characterized as
the unique element X € L?(T M) which satisfies

df(X) = |df|* = | X|* wm-a.e.



Def 9.10 (Test(T'M) and Reg(T'M))

Test(T M) = { Z 9iV [
i=1

Reg(TM) = {Z g;V f;
i—1

\

n €N, f;,g; € Test(M) ; ,

/

n €N, f;,g; € Test(M) U R1ps

Def 9.11 (Test(T*M) and Reg(T*M))

Test(T*"M) = < Zgidfz-

=1

Reg(T"M) = < Zgidfi

C 2=1

\

n €N, fi,g; € Test(M) ; ,

/

n €N, fi,g; € Test(M) UR1,,

\

/

\

/



Test(T M) — LP(TM) (resp. Test(T*M) — LP(T*M))
for p € [1,+o0], hence Reg(TM)NLP(TM) — LP(TM)
(resp. Reg(T"M ) N LP(T*M ) — LP(T*M)). From this,
L3 (TM) N LP(TM) — LP(TM) (resp. L%(T*M) N
LP(T*M) — LP(T*M)) for p € [1,+o0.

We define

L*((T*)®*M) := L*(T*M) Q L*(T*M),

L*((T)®*M) := L*(TM) Q L*(TM).



They are point-wise isometrically module isomorphic: the

respective pairing is initially defined by
(wl X wz)(Xl X Xz) p— wl(Xl)wQ(Xz) m-da.e€.

for wy, ws € L2(T*M)NL>®(T*M) and X, X, € L%(TM)
L>°(T M), and is extended by linearity and continuity
to L?((T*)®?°M) and L?*((T)®?M), respectively. By a
slight abuse of notation, this pairing induces the (Riesz)

musical isomorphisms b : L?((T)®°M) — L*((T*)®?M)



and f# := b~! given by

(A | T := A(T) =: (A|T")y wm-a.e. (23)

and write |[A|gs := /(A | A)y and |T|gs := /(T | T)m
for A € L2((T*)®2M) and T € L2((T)®2M).
Given any £k € NU {0}, we set
L*(AT*M) : = AL*(T*M),

L*(ATM) : = AL*(TM).

L*(A'T*M) = L*(T*M), L*(A'TM) = L*(TM),

L*(A"T*M) = L*(A°TM) = L*(M;wm).



These are naturally Hilbert modules. L*(AT*M) and
L?(ATM) are pointwise isometrically module isomor-
phic. For brevity, the induced pointwise pairing between
w € L*(AT*M) and X; A X; € L*(ATM) with X; €
L?>(TM) N L°°(TM), is written by

(.U(Xl, Xl) pp— (.O(Xl A\ Xl).

Test(AT*M) : = « Z_f,?dfil AN ANdf; | n €N,

2=1

fi € Test(M) for 0 < j < k p,

/




Test(ATM) : =Y fIVf A---AVf;|neN,

L 2=1

fz] € Test(M) for 0 < 3 < k »,

/

Reg(AT*M) : =< » fidff A---Adfi|n €N,

L 2=1

f,f € Test(M) for 1 < j < k, f; € Test(M) UR1,y ¢,

/

Reg(ATM) : =< » fldff A---Adfi|n €N,

C2=1

\

f] € Test(M) for 1 < j < k, f{ € Test(M) U Ry (.




B8l 9.12 ((1, 2)-Sobolev space W12(T'M))

The space W12(T M) is defined to consist of all X €
L2(T M) for which °T € L?(T®2M) s.t. for Vg1,g2,h €
Test (M),

/ h{T |Vg; ® Vgz)dm
M

= —/(X, ng)div(thl)dm—/h Hess g2( X, Vg;)dm.
M M

Here Hess go € L?((T*)®?M) is the Hessian defined for
gy € Test(M). The element T is unique, denoted by

V X and called the covariant derivative of M.



The space W (T M) endowed with the norm ||-||yy-1.2(a

Is given by

I X r2erary = 1 X N 2ary + IV X 720200y

We also define the covariant functional €., : L*(T M) —
[0, +oo[ by

/ VX [|%dm X € Wh2(TM),
8c:ov()() .= M (24)

o0 otherwise.



It is proved in Braun ('22+) that (W"*(T'M), ||-|lw12(zar)
Is a separable Hilbert space, V is a closed operator,
Reg(TM) C WY(TM), WH(TM) — L*(T M), and
Isc of E.oy : L*(T M) — [0, +00].

IDef 9.13 ((1, 2)-Sobolev space H"?(T' M)) We define thi
space H"*(TM) C W"*(TM) as the || - ||z, (7
closure of Reg(T M):

H'“2(TM) := Reg(TM)""WhTm

HY“(T M) is in general a strict subset of W1*(T' M).



Lem 9.1 (Kato’s inequality, Braun ('22+) ) For "X € H1!*
| X| € D(E) and

IVIX|| < |VX|gs wm-a.e.

If X € H“2(TM) N L>*(M;wm), then | X|? € D(E).

IDEf 9.14 (Bochner Laplacian) We define D((15) to con-
sist of all X € HY2(T M) for which °Z € L?(TM) s.t.

for 'Y € HY2(T M),

/M(Y, Z)dm = — /M(VY VX )dm.



In case of existence, Z is uniquely determined, denoted

by (0 X and called the Bochner Laplacian (or connection

Laplacian or horizontal Laplacian) of M.

B °

observe that D([OP) is a vector space, and that

D(OP) — L?*(TM) is a linear operator. Both are easy

to see from the linearity of the covariant derivative.
We modify the functional from (24) with the domain

WL2(T M) by introducing the “augmented” covariant



energy functional €., : L2(TM) — [0, +o0] with

& (X) / VX |fiedm X € HY?(TM),
cov - — M
o0 otherwise.

Clearly, its (non-relabeled) polarization ., : H“2(TM)?

B

R is a closed, symmetric form, and Is the non-positive,
self-adjoint generator uniquely associated to it. We write
€8 instead of £..,. Let (PP):>0 be the heat semigroup

on L?(T M) formally written by

B
“pB = et



For « >0 & X € L*(TM), RBX := [* e **PBXdt.

Lem 9.2 ( Braun(’22+)) We have the following:

(1) 0 < inf o(—A) < inf o(—B).

(2) For VX € L?*(TM) and every t > 0,
|P°X| < P|X| wm-ae. (25)
IBBE 9.1 (Braun('22+)) Suppose p € [1,+oo[. Then the
heat flow (P}°);>o can be extended to a contractive semigroup

on LP(T M), which is strongly continuous on LP(T'M') under
p € [1,4oo[ and weakly* continuous on L>°(T'M).



Givenw € L°(AT*M) and X, -+ , X3, Y € L°(TM)

we use the standard abbreviations: for 1 <1 < 3 < k

N

W(X;) = w(Xoy -+ s Xy v 5 Xp),
= W(Xo A AXit A X A A X,
w(Y,X5,Y;) : = w(Y, Xoy v s Xiyeoe s Xjuooe y Xi),s
= W(Y AXgAAXi1 A Xia

Ao NY; LAY Aee e A Xy,



IDef 9.15 (Sobolev space D(d))
D(d): The set of all w € L?(AT*M) for which 35 €
L2(A*TIT*M) s.t. for VX, -+ , X} € Test(M),

1
/ 1(Xo, - - - ,Xk)dm:/ Y (1) w(X;)div X;dm
M M i—o

11
_I'/ >: >: (—1)"Mw([X;, X;], Xi, X;)dm.
M ;—o j=i+1

In case of existence, the element 7n is unique, denoted

by dw and called the exterior derivative (or exterior dif-

ferential) of w.



We always endow D(d) with the norm || - || p(q) given by

”‘*’H%(d) = Hw||%2(AT*M) + ||dw||%2(AT*M)'

We introduce the functional €4 : L*(AT*M) — [0, +o0]

with

() 1= /M l[dw|?’dm w € D(d),

o0 otherwise.
We do not make explicit the dependency of £4 on the
degree k. It will always be clear from the context which

one iIs intended.



It is proved in Braun('22+) that (D(d), || - ||p@)) is a
separable Hilbert space, the exterior differential d is a
closed operator, Reg(AT*M) C D(d), D(d) is dense
in L?(AT*M), and the functional &4 : L*(AT*M) —

[0, +00] is lower semi continuous.

IDEf 9.16 (The space D,..(d)) We define the space D«
D(d) by the closure of Reg(AT*M) w.r.t. the norm

|+ |l p(a):

D,ep(d) := Reg(AT*M)”.”D(d).



It is proved in Braun ('22+) that for "w € D, (d), we
have dw € Dyeq(d*+) with d(dw) = 0.

IDef 9.17 (The space D(d,)) D(d,): The set of all w €
L?(AT*M) for which “p € L?(T*M) s.t. for ' €

Test(T*M ), we have

/M<p, n) dm = /M<w, dn) dm.

If it exists, p is unique, denoted by d.w and called the
codifferential of w. We simply define D(d?) := L°(M;m)

and d, := 0 on this space.



IDEf 9.18 (The space W' ?(AT*M)) Define the space W'
by W12(AT*M) := D(d) N D(d,). By Braun('22+),
we already know that W1?(AT*M) is a dense subspace
of L*(AT*M).

We endow W2 (AT*M) with the norm ||-|| 1.2 arr)

given by

||w||%v1,2(AT*M) . = ||w||%2(AT*M) -+ ||dw||%2(Ak+1T*M)



and we define the contravariant functional
Econ : L*(AT*M) — [0, +00] by

/ |dw|? 4 |dww]?] dm w € WH2(AT*M)
gcon(w) = M

o ® otherwise.
Arguing as for Braun('224), WH2(AT*M) becomes a
separable Hilbert space w.r.t. || - ||yy12(a7#0s)- Moreover,
the functional €., : L*(AT*M) — [0,+oc] is clearly
lower semi continuous.
By Braun('22+), Reg(AT*M) C WY%(AT*M), so

that the following definition makes sense.



IDef 9.19 (The space HY?(AT*M))
The space H?(AT*M) C WY%(AT*M) is defined by

the closure of Reg(AT*M) w.r.t. || - |[wrzar=pr):

H'“(AT*M) := Reg(AT*M) ' "W'">*181)

IDEf 9.20 (L>-Hodge-Kodaira Laplacian A™") The space
D(A™) is defined to consist of all w € H“2(AT*M)
for which Fa € L2(AT*M) s.t. for 'n € HY2(AT*M),

/M<a’ n)dm = — /M [(dw, dn) + (d.w,dn)] dm.

In case of existence, the element « is unique, denoted by



A" W and called the Hodge Laplacian, Hodge-Kodaira
Laplacian or Hodge-deRham Laplacian of w. Formally

A"™w can be written “A"w = —(dd, + d.d)w”.

For the most important case k = 1, we write AHE
instead of A". We see A" = A the usual L%
generator associated to the given quasi-regular strongly
local Dirichlet form (€, D(E)). Moreover, the Hodge-

Kodaira Laplacian A"® s a closed operator.



We define the heat flow PM"* on 1-forms associated to

the functional €., : L2(T*M) — [0, +00] with
N / |dw|® 4 |dsw]?] dm w € HY?(T*M),
M

Econ(w) :=
o0 otherwise.

We write UK instead of £..,,. Let (PH%)¢>0 be the heat
semigroup of bounded linear and self-adjoint operator on

L?(T*M) formally written by

K
“PtHK . — etﬂl "

The following are important:



Lem 9.3 ( Braun('224)) We have the following:

(1) For Vf € D(€) and every t > 0, AP, f € D(A") and
PHEdf = dPf. (26)
(2) If w € D(d,) and t > 0, then P"*w € D(d.) and
d.P/"w = Pd,w. (27)
(3) inf o (—AF) < inf o(—A"H).

The formulas (26) and (27) are called intertwining proper-
ties, which play a crucial role to prove the LP-boundedness

of Riesz operator.
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Phylogenetic trees
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m Evolutionary trees are constructed from genetic data

m Very typically a collection of trees is obtained: Bayesian

posteriors, bootstrap samples, gene trees

The origin of wald space



m Suppose (X, d) is a metric space and Y C X
m Example: consider S C R3

metric on S2
The origin of wald space

m Standard Euclidean metric on R3 restricts to give the chordal
m Call metric on Y C X an ambient metric
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Induced intrinsic metric

m Measure path length in Y infinitesimally with ambient metric

m Define new metric on Y as infimum of path length between
points

m Call this the intrinsic metric induced by d

The origin of wald space



Notation

m Phylogenetic tree = a connected acyclic graph with no degree
2 vertices

m Leaves are labelled 1,..., N and root 0

m Edge weighted — each edge has weight in R+

Each tree contains at most 2N edges

0 0

The origin of wald space



Metrics between trees

BHYV tree space

N e . )
Trees — R? 2 intrinsic metric induced by Eucl. metric
Y

m Beautiful CAT(0) geometry, but...
m Treats trees as geometrical / combinatorial objects

The origin of wald space



Metrics between trees

BHYV tree space

N e . )
Trees — R? 2 intrinsic metric induced by Eucl. metric
Y

m Beautiful CAT(0) geometry, but...
m Treats trees as geometrical / combinatorial objects

Alternatively

Forests < distributions on {0,1}"

The origin of wald space



Metrics between trees

BHYV tree space

N e . )
Trees — R? 2 intrinsic metric induced by Eucl. metric
Y

m Beautiful CAT(0) geometry, but...
m Treats trees as geometrical / combinatorial objects

Alternatively

Forests < distributions on {0,1}"

Wald space
Forests < ST(N) intrinsic metric induced by A.l. metric

The origin of wald space



Markov substitution models

m Suppose we have a tree T and an alphabet Q = {A,C,G, T}

m Model how each letter in the genome of the species at the
root evolves over the tree via a continuous time Markov
process with state space Q

m Tree induces distribution of letters at the leaves
i.e. distribution on QN

m Use to infer phylogenies from genetic sequence data

Bayes theorem:

Pr(T | gene sequence data) o Pr(gene sequence data | T)Pr(T)

The origin of wald space



Two state symmetric model

m Take Q = {0,1} and let X(t) random variable at t € T
m If t;,to € T are path-length ¢ apart
(1+7)

o)

m If X1,..., Xy are the random variables at the leaves then

Pr(X(tz) = X(tl)) =

NI RN~

Pr(X(t2) # X(t1)) =

Cov (X;.X) = 7 exp(~L5)

where £j; is the path length between leaves / and j

The origin of wald space



Embedding trees in a space of distributions

m Given a tree T, the substitution model induces a distribution
on letters Xi,..., Xy at the leaves

m Let D(QV) denote distributions on QN

m Let pr(s) denote probability mass function associated with
tree T, s € QN

m For two state symmetric model T — D(QV) is injective

The origin of wald space



Embedding trees in a space of distributions

m Given a tree T, the substitution model induces a distribution
on letters Xi,..., Xy at the leaves

m Let D(QV) denote distributions on QN

m Let pr(s) denote probability mass function associated with
tree T, s € QN

m For two state symmetric model T — D(QV) is injective

Previous work
m Kim (2001): ‘Slicing hyperdimensional oranges’
m Moulton and Steel (2004): the edge-product space
o Considered topology of space of tree-like Markov models

The origin of wald space



Ambient information metrics

m Any metric dam on D(QV) pulls back to give a metric
between trees

d(T17 T2) - dam(PTlapTz)

m Choice of metric on D(QN)

o Jenson-Shannon, Hellinger, (Kullback-Leibler divergence)

E.g. Hellinger distance between p, g € D(QN)

du(p.a)’ =5 3 (Vo) ~ v/a))

The origin of wald space



0.45;

0.4

0.35f

0.3

0.25f

0.2

0.15|

0.1

0.05]

JS distance
BHV metric

10 15 20 25 30
Scaling factor o

45 50

m Pick two random trees and scale all edges by o > 0
mAsa— o0, d(T1, T2) —» 0

The origin of wald space
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Trees and forests

m Letters at leaves separated by infinitely long edges are
independent

m Any tree T containing k infinitely long edges can be broken
up into a forest F = Ty U---U Ty

m Distribution associated to F is

k+1

PF = H PT;
i=1

The origin of wald space



Trees and forests

m Letters at leaves separated by infinitely long edges are
independent

m Any tree T containing k infinitely long edges can be broken
up into a forest F = Ty U---U Ty

m Distribution associated to F is

k+1

PF = H PT;
i=1

Remark: By expanding all edges to infinite length, obtain the
forest of N isolated vertices

The origin of wald space



Fisher information geometry for symmetric 2-state model

m Fix an unweighted binary tree (a tree topology)
m Phylogenies with this topology are parametrized by £ € RZN !

m Equip ]Ri% 1 with the Fisher information metric

gi(0)= Y pels) [88@, |0gpe(5)] [; log pe(s )]

se{0,1}N

where py(s) is the probability mass function on {0, 1}V
associated with the tree with edge lengths £

The origin of wald space



Fisher information geometry for symmetric 2-state model

m Fix an unweighted binary tree (a tree topology)

2N—-1

m Phylogenies with this topology are parametrized by £ € R,

m Equip Ri’g‘l with the Fisher information metric

gi(0)= Y pels) [ai |0gpe(5)] [88[ |ogpe(5)]

se{0,1}N

where py(s) is the probability mass function on {0, 1}V
associated with the tree with edge lengths £

m Gives Rilg_l the structure of a Riemannian manifold

m Solve the geodesic equation for the Riemannian metric
numerically

The origin of wald space



Why the Fisher information metric?

Lemma

Consider a small perturbation §¢ = (61, ..., 6¢?N) of the edge
lengths of a tree (7, £).
Then (using Einstein summation notation)

1 . .
Eéglgu(£)6gj = ambient(pea p@—i—(%)'

i.e. the norm of the perturbation, as measured with respect to the
Riemannian inner product, is proportional to the ambient metric

The origin of wald space



Information geodesics in an orthant for N = 4

m Plots substantially different from equivalent for BHV

The origin of wald space

m Unshown: pendant edge lengths change non-trivially



A continuous Markov model

Problems:

1 Geodesics expensive to compute — sum over QV

2 What about geodesics between trees with different topologies?

Solution: consider Gaussian process Z(t), t € T, which
approximates 2-state symmetric process

Z(t2) | Z(tl) =z~ N(Ze_étlb, 1— e_2€f1f2)

where /44, is path-length between t;,tp € T

The origin of wald space



m Induced distribution p7 on QN = RN is N(0, X) where
Cov (Z,', ZJ) = Z,‘j = exp(—E,-j)

and /j; is path length between leaves i,j on T

m Correlation matrix ¥ matches that for 2-state symmetric
model on T, and can be shown to be strictly positive definite

m In the Fisher information matrix, summation over QN is
replaced by tractable integrals

m This is the well-known affine invariant geometry on symmetric
positive definite matrices

The origin of wald space



Comparison of geodesics for discrete and continuous
models

The origin of wald space



The origin of wald space

1 Aim to construct a geometry for phylogenetic trees by
regarding them as probability models for genetic sequences

2 Calculation and properties of ambient information metrics
3 Induced intrinsic metric given by the Fisher information
Riemannian metric
4 Replace Q = {0,1} with Q = R and use Gaussian process on
each tree T
o Distribution pr is multivariate normal N(0, X)
o Sums over QN replaced with tractable integrals
o This is the affine invariant geometry on symmetric
positive definite N x N matrices

The origin of wald space
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Outline of the talk

As a generalization of the successful theory of convex
optimization in CAT(0)-spaces, we consider (geodesic)
Gromov hyperbolic spaces.

@ Background
@ Gromov hyperbolic spaces
© Contraction estimates
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§1 Background

§1 Background

Motivating question |

Convex optimization (analysis of gradient flows for
convex functions) in CAT(0)-spaces made remarkable
progress since the mid-1990s.

(Jost, Mayer, Ambrosio—Gigli-Savare, BacCak, etc.)

Can one generalize to some non-Riemannian spaces?
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§1 Background

CAT(0)-spaces

A metric space (X, d) is a CAT(0)-space if
@ geodesic,i.e., Yx,y € X, dy: [0,1] — X (minimal
geodesic) s.t.

y0) =x, y()=y, dy(s),y®)=lt—sld(x,y).
@ Vx,y,z€ X, VYmin. geod. y: [0,1] — X from y to z,
d*(x,y(1) < (1 —0)d*(x,y) + td*(x,2) — (1 — Htd*(y, 2).

The latter condition means that [d?(x, y(-))]” > 2d*(y, 2),
thus Hess[d?] > 2, in the weak sense (along geodesics).
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§1 Background

CAT(0) is
@ a synthetic notion of nonpositive curvature:

A complete, simply connected Riemannian
manifold is CAT(0) iff its sectional curvature is < 0.

@ a “Riemannian” condition:

Among Banach spaces, only Hilbert spaces are
CAT(0). In particular, non-Riemannian Finsler
manifolds cannot be CAT(0).
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§1 Background

Gradient flows

As usual, we employ the proximal operator constructing
discrete-time gradient curves:

(X,d): ametricspace, f: X — R, 7> 0, x € X:

d*(x, »\
2T

Jf(x) = arg min {f(y) + —

yeX

~» The iteration [Jf k]"(x) converges to a gradient curve
&(r) for fas k — oo.
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§1 Background

Contraction property

The convexity of 4> & the Riemannian property are
essential in the theory of gradient flows in CAT(0)-sp.’s.

Let (X, d) be CAT(0) and f be K-convex (K € R), i.e.,

K
ﬂﬂmsmenﬂﬂmnwbu»—ga—memxﬂm
Vmin. geod. v: [0,1] — X, Vt € (0, 1).

Contraction property
For any gradient curves & and ¢ for f,

d(€(n), L) < e Md(£(0),£(0)) Vi> 0.
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§1 Background

The contraction property was generalized to:

@ CAT(1)-spaces
(metric spaces of sectional curvature < 1)

@ Alexandrov spaces
(metric spaces of sectional curvature bounded below)

@ RCD(K, «)-spaces

(metric measure spaces of Ricci curvature bounded below)

These are all Riemannian!!
(Non-Riemannian Finsler manifolds are excluded.)
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§1 Background

Finsler case?

In fact, contraction property fails for Finsler manifolds
and normed spaces (O.—Sturm 2012).

Open problem |

Any weaker contraction property for convex functions
on Finsler manifolds or normed spaces?

As a class including some non-Riemannian Finsler
manifolds, we consider Gromov hyperbolic spaces.
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§2 Gromov hyperbolic spaces

§2 Gromov hyperbolic spaces
Let (X, d) be a metric space.

For x,y, z € X, define the Gromov product:

1
O2)y = E{d(x, y) +d(x,2) —d(y,2)} > 0.

R? y y

V[2)x

X Z X

(V1)
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§2 Gromov hyperbolic spaces

o-hyperbolic spaces

(X, d) is o-hyperbolic (6 > 0) if
(xl2)p = min {(x[y),, Ol2)p} =6 Yp,x,y,z€ X,
(X, d) is Gromov hyperbolic if it is 6-hyperbolic 46 > 0.

Equality holds with 6 = 0 in trees. Thus, trees are
0-hyperbolic.

Roughly speaking, a ¢-hyperbolic space is close to a
tree up to some “local” perturbations of scale < 6.
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§2 Gromov hyperbolic spaces

@ Complete, simply connected Riem. manifolds of
sect. curvature < —1 are Gromov hyperbolic.

@ Metric spaces with diameter < 6 are 6-hyperbolic.

@ Hilbert geometry on a sufficiently smooth & convex
domain D c R" is Gromov hyp. (Karlsson—Noskov
2002); it is non-Riemannian unless D is an ellipsoid.

We shall use the following two fundamental properties

of 6-hyperbolic spaces (compare them with triangles in
trees).
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§2 Gromov hyperbolic spaces

Let y,n: [0, 1] — X be geodesics emanating from the
same point x and put y = y(1), z = n(1). Then, for any y’
onvy and 7' on np with d(x,y’) = d(x,7") < (y|2)x, we have

d(y',7) < 46.

Shin-ichi OHTA (Osaka Univ./RIKEN AIP)

Y

(Vlz)x

Gradient flows in Gromov hyperbolic spaces 12/Oct/2023 (ENSAE, Paris) 13/21



§2 Gromov hyperbolic spaces

Let y; be a geodesic from p to x;, i = 1,2. Then, for y; on
¥i .. mini—1 > d(p, yi) > (x1|x2), — o with o > 0, we have

|(x11x2)p = O1ly2)pl < 66 + 0.

X1

X2

(x1]x2)
p = (yllyZ)p
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§3 Contraction estimates

§3 Contraction estimates

Setting |

Let (X, d) be a proper (i.e., bounded closed sets are compact),
geodesic, ¢-hyperbolic space, f: X — R be K-convex
(K > 0). Moreover, assume that f is L-Lipschitz and
infy f is attained at some p € X.

(K-convexity along geodesics seems a strong condition
~» related to next talk)
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§3 Contraction estimates

Recall the resolvent/proximal operator:

2
J/(x) := are min {f(y) . & (x’y)}, > 0.

Note that Jf(x) # 0 by the properness.

If X is atree, Vy € Jf(x),
d(p,y) = d(p, x) —d(x,y),
i.e., this algorithm (PPA)
goes straight to the

b closest minimizer of f.
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§3 Contraction estimates

Because of inevitable local perturbations of scale < ¢,
the o-hyperbolicity provides a meaningful information
only in a large scale. Thus we consider J{ with large
relative to ¢ (“giant steps”).

Our main results are the following contraction
estimates. (We use Lemma A/B to prove Theorem A/B,
respectively.)
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§3 Contraction estimates

Theorem A (Tendency towards a minimizer p)
In the setting above, Yx € X, Vy € J{(x), we have

4N2tLd
VKT + 1.

If K >0andr> K', we further obtain
f-f (p) 4N2tLo
d(p,y) <d(p, 1 - — :
(p,y) <d(p,x) - ( K}) 7 <VE?7FT
(If f(x) > f(p), thend(p,y) < d(p, x).)

d(p,y) <d(p,x) —d(x,y) +

Cf: The case of trees.
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§3 Contraction estimates

Theorem B (Contraction estimate) |
Let x1,x2 € X, y; € JL(x) (i = 1,2), d(p,y1) < d(p,y2).
Q [fd(p,y1) = (x1]x2),, then we have
d(y1,y2) < d(x1,x2) — d(x1,y1) — d(x2,y2)
+ Svorlo V2r1Lo +
VKT + 1

Q Ifd(p.y1) < (x1lx2),, then we have
d(y1,y2) < d(x1,x2) — (plx2)y, + C(K, L, D, 7,06),

where D := max{d(p, x1),d(p, x»)} and
CK,L,D,t,0) = OK,L,D,T(51/4) as o — 0.

126.
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§3 Contraction estimates

(i) y1, y> do not reach the branching point.
X

Yoy x

p

(ii) Essentially reduced to the 1D case (on p ~ x»).
X
(p|'x2))(1 !
i Y2 X2

p
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Outline of the talk

@ As a generalization of the successful theory of
convex optimization in CAT(0)-spaces, we consider
(geodesic) Gromov hyperbolic spaces.

@ In this talk, we study barycenters of probability
measures.

@ Background
@ Barycenters
© A law of large numbers
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§1 Background

§1 Background

The class of geodesically convex functions seems
restrictive, compared with the local flexibility of Gromov
hyperbolic spaces.

~» We'd like to build the theory of “roughly convex”
functions on ¢-hyperbolic spaces, including the
(squared) distance function.

~» For this purpose, we first consider the case of
distance function, thus barycenters.
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§2 Barycenters

§2 Barycenters

Let (X, d) be a 6-hyperbolic space. Given a Borel
probability measure u € P*(X) on X of finite second
moment, define the variance of u by

V() := inf f d*(x,2) u(dz) = inf W3(S,, ).
xeX X xeX

If x € X attains the inf, we call it a barycenter of u.
(W, = LP-Wasserstein distance on $?(X).)

Since u may not have any barycenter, we consider

B(u. &) = {x € X| W00 p) < V() + &}, £20.
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§2 Barycenters

One can in fact discuss barycenters of u € P'(X) of
finite first moment, by considering

i f (d2(x, 2) — &(x0, 2)} ()
X

xeX

for arbitrarily fixed xo € X (indep. of the choice of xy).
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§2 Barycenters

In a complete CAT(0)-space, any u € P'(X) admits a
unique barycenter, denoted by 5, € X.

In fact, Vx,y € X, the midpoint w of x and y satisfies (by
integrating the CAT(0)-inequality in u)

1 1 1
W3 (8,0, ) < 5W§(6x,u> + 5W§<6 ) — Zdz(x, y).

~» Any minimizing sequence of W%((S.,,u) is a Cauchy
sequence and converges to the unique barycenter.
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§2 Barycenters

Extending the CAT(0)-inequality with an additional term
depending on ¢ leads the following.

Proposition (Size of B(u, €)) |
Let (X, d) be a geodesic o-hyperbolic space. For any
ueP(X) and x,y € B(u, €), we have

d(x,3) < 2 26(W1(B100) + W6, )} + 467 + 6.

In particular, for € = 0, we have

d(x,y) < O(V5).
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§2 Barycenters

Wasserstein contraction property

In a complete CAT(0)-space, Yu, v € P'(X), we have

d(BusBy) < Wi, v).

In other words, the map

B: (P'CO, W) — X, B =B,

is non-expanding (giving a “projection” from P!(X) to X;
clearly B(6,) = x).
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§2 Barycenters

Theorem (Wasserstein contraction) |

Let (X, d) be a geodesic o-hyperbolic space. For any
u,v € PL(X), x € B(u, &) and y € B(v, &,), we have

d(x,y) < Wi(u,v) + 85 v\/54D VD + 5 V6 + 3(e;1 + &),

where D := diam(supp u U supp v U {x, y}) and
a VvV b := max{a, b}.

In particular, for £, = &, = 0, we have

d(x,y) < Wi(u,v) + 0(6"*).

Shin-ichi OHTA (Osaka Univ./RIKEN AIP) Barycenters in Gromov hyperbolic spaces 18/0ct/2023 (ENSAE, Paris) 9/1



§3 A law of large numbers

§3 A law of large numbers

How to approximate barycenters? In a complete
CAT(0)-space, Sturm established the following.

Take u € P(X) with bounded support, and let (Z;);>; be
a sequence of i.i.d. random variables with distribution p.
We recursively choose

S, :=7, Se:=yk&™Y (k=2),

where y: [0, 1] — X is the min. geod. from §;_; to Z;.
Then S converges to 3, almost surely.
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§3 A law of large numbers

Note that the above recursive choice S requires no
knowledge of the construction of barycenters. J

@ CAT(1)-spaces of diameter < n/2 (O—Pélfia 2015),
@ CAT(1)-spaces of radii < n/2 (Yokota 2018),

@ finite dimensional Alexandrov spaces of curvature
bounded below (O-Palfia 2015).
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§3 A law of large numbers

In a geodesic d-hyperbolic space (X, d), due to the local
flexibility, we fix a rate instead of k~! going to 0.

Theorem (A law of large numbers): Setting |

Take u € P(X) having a barycenter p € X. Let (Z));>1 be
a sequence of i.i.d. random variables with distribution .
Given T > 0, take recursively

S1:=2Z,  Sp:=y2t/Qr+ 1) k= 1),

where y: [0, 1] — X is a min. geod. from §;_; to Z;.
Assume that supp i, p and (Sy)«>1 are all included in a
bounded set Q C X.
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§3 A law of large numbers

Theorem (A law of large numbers): Assertion
Then, Ye > 0, we have

E[d*(p, Si,)] < 8DgT + C(Dq,7,0)d + &

for some ko < D /(t¢), where Dgq := diam(Q).

Hence, after enough iteration (sublinear in g), S likely
passes close to p, which makes it possible to restrict
the region we explore barycenters.

When we assume § < Dq/2 and choose 7 = 6/Dq,
we have
E[d*(p.Si)] < &+ O(V6).
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§3 A law of large numbers

Deterministic approximation

A “deterministic” counterpart to the “stochastic” LLN:

Theorem (Deterministic approximation) |
Let (z;)7., € X and p € X be a minimizer of 37| d*(z;, -).
For 7 > 0 and an arbitrary initial point yy € X, we take

Yin+i 1= Y27/ 2T + 1)),

where y: [0,1] — X is a min. geod. from y,,;_1 t0 z;.
Assume that {p, z;, yu+i} is included in a bounded set Q.
Then, Ve > 0, ko < d*(p, y0)/(27€) such that

2
d2(p, yin) < C(Da, 7,6,)(6 + ) + f
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§3 A law of large numbers

Further problems

@ Improvements by comparing the case of trees
(instead of CAT(0)-spaces as above)?

@ Introduce an appropriate class of “roughly convex”
functions on (possibly non-geodesic) -hyperbolic
spaces, including (squared) distance functions.

@ Study optimization (discrete-time gradient flows)
for functions in the above class, possibly with
random noise (a kind of simulated annealing).
~» Any applications to optimization theory?

@ Any connections with geometric group theory?
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Introduction

Let (X, d) be a complete metric space. Consider a lower
semi-continuous (Isc) function ¢ : X — (—o00, 00| such that

D(¢) = X\ 6~}(o0) £ 0.

If X is Riemannian, a gradient curve £ : [0,00) — X of ¢ with
initial condition £(0) := xp € D(¢) is a solution of

£=-Vo¢(4).

We are interested in constructing gradient curves or finding
minimizers of ¢. Classically, the first is related to the
Crandall-Liggett theory of contraction semigroups in Banach
spaces generated by monotone nonlinear operators. Secondly,
discrete approximations of gradient curves leads us to optimization
techniques, such as proximal point methods. All can be treated in
a unified manner as instances of (contractive) evolution systems in
Banach spaces.
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Given x € X and 7 > 0, the Moreau—Yosida approximation is
2
dr(x) == infrex {gb(z) + %} and set

5200 = {2 € x| o) + T2 5,09}

For x € D(¢) and z € J?(x) we have d?(x,z) < 27{¢(x) — $(z)}.

Assumption

(1) (coercivity) There exists 7.(¢) € (0, o0] such that
$-(x) > —oo and JZ(x) # 0 for all x € X and 7 € (0, 7.(9)).

(2) (compactness) For any Q € R, bounded subsets of the
sub-level set {x € X | ¢(x) < Q} are relatively compact in X.

Remark

If diam X < oo and (2) holds, then the Isc of ¢ implies that every
sub-level set {x € X | ¢(x) < Q} is (empty or) compact. Thus ¢ is
bounded below and we can take 1.(¢) = oo.
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To construct discrete approximations of gradient curves of ¢, we
consider a partition of the interval [0, c0):

Pr={0=80 <tl <...} lim tk = oo,
k—o0
and set
)=tk —tk71 for k € N, |T| := sup Tk.
keN

We will always assume |7| < 7.(¢). Given an initial point
Xp € D(qf)),

0

x2 := xp and recursively choose arbitrary xX € Jfk(xf_l) for each k € N.

We call {xk}en a discrete solution of the variational scheme
associated with the partition &2, which is thought of as a
discrete-time gradient curve for the potential function ¢.
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Convergence of discrete solutions

Let ¢ : (—00,00] — X be A-convex for some A € R in the sense
that

6(1(8) < (1 )6(x) + t6(y) — 51— D)teP(x,y)

for any x,y € D(¢) and some minimal geodesic v : [0,1] — X
from x to y.

We remark that the compactness (2) in the Assumption implies
the coercivity in this case; we even have 7,(¢) = oo if A > 0).
Fix an initial point xo € D(¢). Take a sequence of partitions
{Z+ }ien such that lim;_ |7i| = 0 and associated discrete
solutions {x£ }xen with x0 = xp. Under Assumption (2), by the
compactness argument, a subsequence of the interpolated curves

%7,(0) :==x0,  Xn(t):=xE forte (thi1 k]

T Y T

converges to a curve £ : [0,00) —> D(¢) point-wise in t € [0, 0).
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In general, under the coercivity and A-convexity of ¢ (but without
the compactness), if a curve £ is obtained as above (called a
generalized minimizing movement), then it is locally Lipschitz on
(0,00) and satisfies lim; g £(t) = xo as well as the energy
dissipation identity:

17
H(ET) = D) — 5 [ {6+ IVoP(©} o

Here
€1(e) = @W

is the metric speed existing at almost all t, and

ey MX(000 = 6().0}
V61(x) = limsup TE S =S

is the (descending) local slope. We remark that |V¢| is lower
semi-continuous and lim;_« ¢(X+(t)) = ¢(&(t)) for all t > 0.
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CAT(1)-spaces
Given three points x, y,z € X with
d(x,y)+d(y,z)+ d(z,x) < 2m, we can take corresponding points
%,¥,% in the 2-dimensional unit sphere S? such that
do(X,y7) = d(x,y),  dea(V,2) =d(y,2),  de(Z,X)=d(z,x)
We call AXyZ a comparison triangle of Axyz in S?.
Definition (CAT(1)-spaces)
A geodesic metric space (X, d) is called a CAT(1)-space if, for any

x,y,z € X with d(x, y) + d(y, z) + d(z,x) < 2w and any minimal
geodesic v : [0,1] — X from y to z, we have

d(x,7(t)) < ds2(%,5(t))

at all t € [0,1], where AXy% C S? is a comparison triangle of
Axyz and # : [0,1] — S? is the minimal geodesic from j to 2.
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Lemma (Semi-convexity of distance functions)

Let (X, d) be a CAT(1)-space and take R € (0,7). Then there
exists K = K(R) € R such that the squared distance function
d?(x,) is K-convex on the open R-ball B(x, R) for all x € X.
We define the angle between two geodesics v and 7 emanating
from ~(0) = n(0) = x by Zy(v,n) := lims ¢j0 £Zy(s)Xn(t), where
Z~(s)%n(t) is the angle at X of Avy(s)%n(t) in S2.

Theorem (First variation formula)

Let v : [0,1] — X be a geodesic from x to z, and take y € X
with 0 < d(x,y) < m. Then we have

||£8 d(’Y(S)’y) — d(X,}/) — —d(X,Z) cos éx('%n)a

where 1 : [0,1] — X is the unique minimal geodesic from x to y.
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Key lemma

Let (X, d) be a complete CAT(1)-space and ¢ : X — (—o0, 0]
satisfy the A-convexity for some A € R and Assumption (1).

Lemma (Key lemma)
Let x € D(¢) and 7 € (0, min{n?/(2C), 7(4)/8}) with
C = C(x, (), B(x), 7x(¢)/8). Take x; € J2(x). Then we have,
for any y € D(¢) N B(xr, R — d(x, x:)) with R < 7 and for
K = K(R),

Plxr,y) < B (x,y) ~ Xrd (s, y) + 20{6(y) — ()} — 5 P (x, %)

< d?(x,y) = AMrd?(xr, ) + 27{¢(y) — B(x)}
+ max{O, _K} : T{¢(X) - ¢(XT)}
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proof of the Key lemma

We have d?(x,x,;) <2Ct < w2 by an a priori lemma of
Ambrosio-Gigli-Savaré and the choice of 7. Let v: [0,1] — X be
the minimal geodesic from x; to y, and 7 : [0,1] — X from x; to
x. For any s € (0,1), by the definition of J?(x) and the
A-convexity of ¢, we have

2 X, X 2 X S
o) + TE) <y 5e)) 4 D
(1 $)(xr) + 50(y) ~ 5 (1~ $)s(x.y)
L P0(s)

2T
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Hence

1 d?(x,(s) — d*(x, %) 5(1 — 5)d?(xr, y).

P(xr) < oly) +

2T s 2
Applying the first variation formula twice, we observe the
commutativity:
L Ps) — Px) | d(t),y) - e y)
50 s t10 t ’

since both sides equal —2d(x:, x)d(x;,y) cos Zyx_ (7, n).
Notice that 7 is contained in B(y, R) by the choice of y. Thus it
follows from the K-convexity of d?(-,y) in B(y, R) that

|imd2(7l(t)a}’) - dz(X7'7y) < d2(
tl0 t

< dz(X7y) - dz(XTy)/) + maX{O? _K} ’ T{¢(X) - ¢(XT)}

K
Xv.y) - dz(XTv.y) - Edz(X7XT)
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Remark

(a) Used before by Mayer, Ambrosio-Gigli-Savaré and Bacdk is the
direct application of the convexity of ¢ and d?(x,-) along =y, which
implies in our setting

K (e, y) < d2(x,y)~Ard?(xs, y) + 27 {0(y)— b(x:)}— (. x,).

2
This coincides with our estimate when K = 2. The commutativity
was used to move the coefficient K /2 from d?(x,,y) to d?(x, x;).
(b) The Riemannian nature of the space (i.e., the angle) is
essential in the commutativity. In fact, on a Finsler manifold

(M, F), commutativity (written using only the distance) implies

g (v,w) =gu(v,w) for all v,w € T,M\ {0}, x € M,

and the parallelogram identity on TyM and hence F is Riemannian.
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Applications to gradient flows

Our argument covers two cases. In both cases, (X, d) is complete,
¢ X — (—00, 0] is lower semi-continuous, A-convex and

D(¢) # 0.
Case (1)
(X,d) is a CAT(1)-space.

Case (I1)

(X, d) satisfies the commutativity and the K-convexity of the
squared distance function, and ¢ satisfies the coercivity condition
(Assumption (1)).

We stress that both A\, K € R can be negative.
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Interpolations

Given an initial point xp € D(¢) and a partition & with

|T| < 7w(¢), we fix a discrete solution {xX}xcn. Let us also take a
point y € X. We interpolate the discrete data xX, d(xX,y) and
B(xX) as follows:

For t € (tk=1 tk], k € N, define

k=1 1/2
d.(t:y) = {d2(xﬁl,y) k) - dz(xil,y)}} ,
_ 4k—1
Br(t) 1= G0 + ET(6(xk) — p(xE1)).

Tk

Recall that 7, = tk — tA=1 and note that ¢ is non-increasing.
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Theorem (Discrete evolution variational inequality)

Assuming || < 7.(¢), we have

1d

5 dr(EV)] + %dz (%+(8),y) + &=(t) — d(y) < Zr k(1)

for almost all t € (0, T) and all y € D(¢), where for t € (tk=1, tX]

B (8) = (tﬁ 0 D) et - et

T 2
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Convergence of discrete solutions

Theorem (Unique limits of discrete solutions)

Fix an initial point xo € D(¢) and consider discrete solutions
{x% }ken with x£ = xo associated with a sequence of partitions
{Z+ }ien such that lim;_, |7Ti| = 0. Then the interpolated curve
X7, :[0,00) — X converges to a curve & : [0,00) — X with
£(0) = xo as i — oo uniformly on each bounded interval [0, T]. In
particular, the limit curve £ is independent of the choice of the
sequence of partitions nor discrete solutions.

We can define the gradient flow operator
G :[0,00) x D(¢) — D(¢) (4.1)

by G(t,xo) := &(t), where & : [0,00) — X is the unique gradient
curve with £(0) = xp. Then the semigroup property holds:

&(
G(t,G(s,x)) =G(s+t,x) forall s, t>0.
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LAppli':ations to gradient flows

Contraction property

Theorem (Contraction property)

Take xo, yo € D(¢) and put &(t) := G(t,x0) and ((t) := G(t, yo).
Then we have, for any t > 0,

d(&(t)a C(t)) < e_)‘td(Xo, y0)-

The contraction property allows us to take the continuous limit

G :[0,00) x D(¢) — D(¢)

of the gradient flow operator, which again enjoys the semigroup
property as well as the contraction property.
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LAppIications to gradient flows

Evolution variational inequality

Theorem (Evolution variational inequality)
Take xo € D(¢) and put £(t) := G(t,xp). Then we have

imeuo EE+9)y) = PE(0).)
imsup 2z
el0

+= d2(§(t) y)+o(&(t) < o(y)

for all y € D(¢) and t > 0. In particular,

S SR ED.)] + 5P (E(D).y) +6(600) < 60)

for all y € D(¢) and almost all t > 0.
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Stationary points and large time behavior of the flow

Theorem
A point xg € D(¢) satisfies |V $|(xo) = 0 if and only if
G(t,xp) = xp for all t > 0.

Theorem (Large time behavior)

Take xo € D(¢), put &(t) := G(t,x0) and assume
lime—oo @(&(t)) > —o00. Then we have lim;_ |V|(£(t)) = 0.

Corollary

Take xg € D(¢), put &(t) := G(t,x0) and assume that there is a
sequence {tp}nen such that limp_o t, = 0o and {&(tn) }nen
converges to a point x. Then X is a stationary point of ¢ and

lim: 00 p(£(1)) = ¢(X).
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A Trotter—Kato product formula

Assumption

Let (X, d) be a complete metric space in either Case (1) or

Case (Il), and assume additionally D := diam X < oco. For

i =1,2, we consider Isc, Aj-convex function ¢; : X — (—o00, 0]
(A\i € R) satisfying D(¢1) N D(¢2) # 0 and the compactness
(Assumption (2)).

Given zy € D(¢) = D(¢1) N D(¢2) and a partition &2, we consider
the discrete variational schemes for ¢1 and ¢, in turn, namely

z.,q := zg, choose arbitrary ﬂf € Jiil(z.ff*l) and z.ff € Jff(fff) for k € N.
The Trotter—Kato product formula asserts that {zX},>0 converges
to the gradient curve of ¢ := ¢1 + ¢2 emanating from z in an
appropriate sense.
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Assumption
Given zg € D(¢) and a partition &, set

5 (20) = max{0, 92(25) — da(2571), 61(25) — 61(24)}

for k € N by suppressing the dependence on the choice of
{2k, 2KV 1 en. Assume that, for any e, T > 0, there is A/ (z) < oo
such that

N
> 6k(z0) < Al(20)
k=1

for any &, with |1| <&, N € N with tN < T, and for any
solution {2X, zK} ,cn. This in particular guarantees that 25 € D(¢)
and zK € D(9).
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LA Trotter—Kato product formula

Introduce the interpolated curve z-:

Z:(0) =z,  z,(t):=zK forte (th71 tk].

Theorem (A Trotter-Kato product formula)

Let the above assumptions be satisfied. Given zy € D(¢), the
curve Z, converges to the gradient curve £ :== G(+, z) of ¢
(constructed in the previous section) as |T| — 0 uniformly on each
bounded interval [0, T].
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Nonsmooth convex optimization

Definition (Proximal Point Algorithm)

Let (X, d) be a complete Alexandrov space either with curvature

bounded above or below by k, and G C X be a closed,

geodesically convex set satisfying the following:

(1) In the upper curvature bound case, diam G < 7/(2y/k) if
k> 0;

(2) In the lower curvature bound case, dim X < oo, X = 0, and
diam G < oo if & < 0. Also J{(x) := gexp,(AV(—F)(x)).

Let fi : G — (—o0, 0] be convex, Isc for i =1,...,n. Set

f(x) := Y7, fi(x) and suppose it is proper. Take A\x > 0 s.t.

oMk =100, D2 g A2 < +0o0. Given xg € G and for each
k>0and 1 </ < n, we set

Xknti = Jfk(an+ff1)~



Gradient flows and calculus of variations in CAT(1)-spaces

LNcmsm(mth convex optimization

Theorem

Let (X,d), GC X, f=>3"f and {\(}k>0 be as above.
Assume further that X is locally compact, f; is L-Lipschitz for
some L > 1 and all i, and that infg f is attained at some point.
Then x,, converges to a minimizer of f in G as m — oo.

Proposition

Let (X,d), GC X, f =57, f; be as above and further assume
that f; is L-Lipschitz, and that f is K-convex for some K > Q.
Take A\ > 0 with A\ K <1, Ay — 0 and 220:0 A = +00, and
consider the sequence {xm}m>0 generated by the above. Then xp,
converges to the unique minimizer y € G of f as m — oo.
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An application: Sturm's law of large numbers

Theorem (Sturm 2002, Annals of Prob.)

Let (X, d) be a CAT(0)-space and let P%(X) denote the set of all
probability measures p s.t. [, d®(x,a)du(a) < co. Let a#:b
denote the unique geodesic between a, b € X. Then for u € P?(X)

Ap) = argerilin/x d?(x,a)du(a)

exists and is unique. Moreover consider an i.i.d. sequence of
random variables {Y;}ien with law p and define

51 = Yl,
Skt1 = 5k#%+1 Yi+1-

Then Sy converges to N(u) almost surely, if supp(p) is bounded.
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L Nonsmooth convex optimization

An application: Nodice theorem for the Karcher mean

A deterministic version of Sturm’s law (cf. also Holbrook 2012):

Theorem (Lim-Palfia 2014, Bull. LMS)

Let (X, d) be a CAT(0)-space and let ;1 := Z,’-’:_Ol 15, with

a; € X. Consider the deterministic sequence {Si}xen defined as
the inductive sequence of geometric means

S = ap,

S 225 1 ag
k+1 k#le T

where k := k mod (n). Then S; — A(u) with rate

d(Sk, M) = O(1/k).

The above along with Sturm'’s slin even generalizes to CAT (k)
spaces (Ohta-Pdlfia 2015, Yokota 2018) and positive operators
(Lim-Palfia 2020, 2021).
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Abstract law of large numbers

Let G C X be a closed, geodesically convex set. We assume that
(G, d) is separable. Consider the set of all lower semi-continuous,
convex functions f : G — (—o0, oo] not identically +o00, denoted
by F(G). For K > 0, we denote by Fx(G) the subset of all lower
semi-continuous, K-convex functions f : G — (—o0, 00| not
identically 4o0.

Denote by B(Fk(G)) the set of all complete probability measures
on Fk(G) with o-field generated by the topology of one-sided
uniform convergence, such that g(x) := fFK(G) f(x)du(f) is Isc
(—o00, +0o0]-valued K-convex and there exists x € G so that

g(x) < 4o0.
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Definition (Variance)
We define the variance of u € P(Fx(G)) by

x€G

var(p) := inf /FK(G) f(x)du(f).

A fixed p1 € P(Fk(G)) can be viewed as the distribution of an
Fk(G)-valued random variable. Ep := fFK(G) o(f)du(f)

Definition (Expectation)
Let i € P(Fx(G)). We define the expectation of i as

Ep = arg min/ f(x)du(f),
x€G FK(G)

which is indeed uniquely determined by the K-convexity of
fF G) dﬂ(f)



Gradient flows and calculus of variations in CAT(1)-spaces

LAbstract law of large numbers

The above is motivated by the definition of Sturm of the
expectation as Ev := argmin, ¢ [ d(x, a)?dv(a) of a probability
measure v supported over G.

Note that g(Eu) = var(u). Let Ly denote the evaluation operator
at x € G defined as Lyf := f(x). Clearly Ly is a linear functional
on the cone Fx(G).

Proposition (Variance inequality)

Let € P(Fk(G)). Then, for all x € G, we have

d(x, Ep)? < %E(Lx L) = % /F o [0~ F(Ea()
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LAbstract law of large numbers

Theorem (Law of large numbers)

Let (X,d) and G C X be as above. Fix i € B(Fk(G)) supported
on L-Lipschitz functions and let {fy }>o denote a sequence of i.i.d.
random variables taking values in Fy(G) with distribution .. Take
a positive sequence { A} k>0 with A\ckK < 1, Ay — 0 and

Y reo Ak = +00. Define the sequence S € G recursively as

5k+1 = J;i(sk), k Z 07

with an arbitrary starting point Sy € G, assuming that Sy € G for
all k > 0 in the lower curvature bound case. Then Sy — Epu
almost surely.
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Calculus of variations in CAT(1)
Variational result for convex Isc potential functions: Kuwae-Shioya
2009, Batédk 2015 proves in CAT(0) spaces that continuity in
Mosco implies continuity of resolvent and thus continuity of
gradient flows.
Definition (Weak convergence)
xn converges weakly to x, if Py(x,) — x for any geodesic
v :[0,1] — X with v(0) = x.
Weak convergence makes sense on geodesically convex sets in
CAT (1) and sequences included in convex balls have weak cluster
points.
Lemma (CAT(1) variant of Batadk's Lemma)
Let (X, d) be a CAT(1) space. Let xp,x € X such that
d(xn, x) < 7/2 for all n € N. Then x, — x if and only if x, — x
and d(xn,y) — d(x,y) for some y € X such that d(x,y) < 7/2.
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Lemma

Let (X, d) be a CAT(1) space with diam(X) < w. Then if (C;)ic;
is a non-increasing family of bounded closed convex sets in X for
an index set I, we have Njc;C; # 0.

Lemma
Let diam(X) < 7. Let f : X — (—00, 0] be a convex Isc function.
Then f is bounded below on bounded sets.

Theorem (Theorem 3.5., Kell 2014)
Let diam(X) < m. Then closed convex sets are weakly closed.

Lemma (Proposition 3.8., Kell 2014)

Let diam(X) < 7. Let f : X +— (—00, 00| be a quasiconvex Isc
function. Then f is weakly Isc. In particular x — d?(a, x) is weakly
Isc on By(7/2).
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LCaIcqus of variations in CAT(1)

Theorem (Yokota's Theorem A, 2016)

Let diam(X) < m. There exists a jointly k-convex Isc function
®: X x X —[0,00) for some k > 0.

Lemma (Ekeland principle, 1979)

Given xp € X and a Isc function f : X — (—o00, 00| that is bounded
below, there exist c,, B > 0 such that for all x € X

f(x) > —ad(x,x0) — B.

Definition (Mosco convergence)

A sequence of Isc functions ¢, : X — R said to converge to
¢ : X — R in the sense of Mosco if, for any x € X, we have

(M1) f(x) < liminf, ;o0 fn(xn) whenever x, ~ x,

(M2) there exists an (y,) C X, such that y, — x and
fa(yn) — f(x).
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LCaIcqus of variations in CAT(1)

Mosco convergence implies uniform minimization

Proposition (Ekeland principle, bounded case)

Let diam(X) < 7. Given xo € X and a uniformly proper sequence
of Isc A-convex functions f, : X +— (—o0, 00| that is Mosco
converging to f : X — (—o0, 0], there exist v, > 0 such that

fa(x) > —ad(x,x0) — B

forall x € X and n € N.

Theorem

Let diam(X) < 7 and f, : X — (—o00, 00| a uniformly proper

sequence of Isc A-convex functions that is Mosco converging to

f: X+ (—o00,00]. Then for any small enough T > 0 and x € D(f)
lim (f,)-(x) = f-(x), lim J7(x) = JF(x). (a)
n—o0

n—oo
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L Calculus of variations in CAT(1)

Remark

If JE(x) is not unique in the above Theorem, then it still follows
that all weak cluster points of Jf(x) are in fact strong cluster
points and are in Jf(x).

Theorem

Let f, : X — (—o0, 0] be a uniformly proper, uniformly lower
bounded sequence of Isc functions that is Mosco converging to

f: X — (—o0,00]. Then (a) holds for any small enough T > 0 and
x € D(f).

Theorem

Let f, : X + (—00, 00| be a uniformly proper sequence of
L-Lipschitz functions that is Mosco converging to f : X — R.
Then (a) holds for any small enough T > 0.



Gradient flows and calculus of variations in CAT(1)-spaces

L References

H. GAL AND M. PALFIA, Convergence of semi-convex
functions in CAT (1) spaces, in preparation.

Y. Lim AND M. PALFIA, Strong law of large numbers for the
L1-Karcher mean, Journal of Functional Analysis 279:7 (2020),
108672.

Y. Lim AND M. PALFIA, Existence and uniqueness of the
L'-Karcher mean, Adv. Math. 376 (2021), 107435.

S. OHTA AND M. PALFIA, Gradient flows and a Trotter-Kato
formula of semi-convex functions on CAT(1)-spaces, Amer. J.
Math. 139:4 (2017), pp. 937-965.

S. OHTA AND M. PALFIA, Discrete-time gradient flows and

law of large numbers in Alexandrov spaces, Calc. Var. PDE
54:2 (2015), pp. 1591-1610.



Gradient flows and calculus of variations in CAT(1)-spaces

L References

L. AMBROSIO, N. GIGLI AND G. SAVARE, Gradient flows in
metric spaces and in the space of probability measures. Second
edition, Birkhauser Verlag, Basel, 2008.

M. BACAK, Convergence Of Nonlinear Semigroups Under
Nonpositive Curvature, Trans. Amer. Math. Soc. 367:6 (2015),
pp. 3929-3953.

K. KuwakE AND T. SHIOYA, Variational convergence over
metric spaces, Trans. Amer. Math. Soc. 360:1 (2008),
pp. 35-75.

K.-T. STURM, Nonlinear martingale theory for processes with
values in metric spaces of nonpositive curvature, Ann. Probab.
30 (2002), pp. 1195-1222.

Thank you for your kind attention!



Computing homology robustly: The geometry of normed chain

complexes

Pierre Pansu, Université Paris-Saclay

October 11th, 2023

Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



A simplicial complex is made of simplices
of various dimensions. Simplicial chains
are linear combinations of simplices. The
boundary of a simplex is a chain, whence
a linear map 0 and its adjoint d, which
satisfy o9 =0and dod = 0.
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A simplicial complex is made of simplices
of various dimensions. Simplicial chains
are linear combinations of simplices. The
boundary of a simplex is a chain, whence
a linear map 0 and its adjoint d, which
satisfy o9 =0and dod = 0.

The homology (resp. cohomology) of the simplicial complex is Ker(9)/Im(9) (resp.

Ker(d)/Im(d).
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satisfy o9 =0and dod = 0.
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Ker(d)/Im(d).

Simplicial chains and cochains can be equipped with ¢P norms.
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A simplicial complex is made of simplices
of various dimensions. Simplicial chains
are linear combinations of simplices. The
boundary of a simplex is a chain, whence
a linear map 0 and its adjoint d, which
satisfy o9 =0and dod = 0.

The homology (resp. cohomology) of the simplicial complex is Ker(9)/Im(9) (resp.
Ker(d)/Im(d).

Simplicial chains and cochains can be equipped with ¢P norms.

In general, a normed chain complex is a normed vector space B equipped with a linear
map d : B — B such that dod = 0.
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When F : By — By is a linear bijection, the robustness of the resolution of the

equation
Fx=y

is governed by the conditioning number

w(F) = |FIIF.
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When F : By — By is a linear bijection, the robustness of the resolution of the
equation

Fx=y

is governed by the conditioning number
w(F) = |FI[F .

For normed chain complexes, we first turn d into a bijection d : B/Ker(d) — Im(d),
and set

K(B) == |d||d].
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Example. The n-stick satisfies H! = 0. The 1-cochain g equal to 1 on the central
edge and 0 elsewhere can be written df where

lglle =1, IIfllp~ n'/".
I

*—o 0 o 0 0 0 ° e 6 6 o6 o o o o
g f
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Example. The n-stick satisfies H! = 0. The 1-cochain g equal to 1 on the central
edge and 0 elsewhere can be written df where

lglle =1, IIfllp~ n'/".
I

*—o 0 o 0 0 0 ° e 6 6 o6 o o o o
g f

When n is large, solving df = g is unstable. The computation of cohomology is
ill-conditioned.

Definition

The conditionning number of a graph X is k(X, p,k) = |d||d—| where
d : C°(X,k)/Ker(d) — dC°(X, k). (It depends on p and on the field k).
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Isoperimetry = the art of cutting space
apart.

|A] =5,

OA| = 15.
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Isoperimetry = the art of cutting space
apart.

|A] =5,

OA| = 15.

Definition

Cheeger’s constant h(X) of a graph X is the largest h such that for every set A of
vertices such that |A| < %|X

|0A] > h|A].

Here, OA is the set of edges connecting A to its complement.
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Isoperimetry = the art of cutting space
apart.

|A] =5,

OA| = 15.

Definition

Cheeger’s constant h(X) of a graph X is the largest h such that for every set A of
vertices such that |A| < %|X

|0A] > h|A].

Here, OA is the set of edges connecting A to its complement.

Proposition

2

= 1y = 2Udlhoilld T i)™ over Fa.
K(X,1,F2) (ldll1—1l] lim1)~" over F

h(X)
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Proposition

Let A be the self-adjoint operator corresponding to the quadratic form
f i ||df||3 = (f, Af). Let Ay < X\ < --- denote its eigenvalues. If the graph X is
connected, then \1 = 0 and

A2 = (ld 7 2s2) 72
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Proposition

Let A be the self-adjoint operator corresponding to the quadratic form
f i ||df||3 = (f, Af). Let Ay < X\ < --- denote its eigenvalues. If the graph X is
connected, then \1 = 0 and

A2 = (ld 7 2s2) 72

In particular,
2251 < ko(X,2,R)2 < 47 L

Computing homology robustly: The geometry of normed chain complexes



Proposition

Let A be the self-adjoint operator corresponding to the quadratic form
f i ||df||3 = (f, Af). Let Ay < X\ < --- denote its eigenvalues. If the graph X is
connected, then \1 = 0 and

A2 = (ld 7 2s2) 72

In particular,
2251 < ko(X,2,R)2 < 47 L

A2 is known as the spectral gap of the graph.
It governs the speed at which a random walk on the graph is mixing. In particular, the
possibility of picking a vertex at random.
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Proposition

Let A be the self-adjoint operator corresponding to the quadratic form
f i ||df||3 = (f, Af). Let Ay < X\ < --- denote its eigenvalues. If the graph X is
connected, then \1 = 0 and

A2 = (ld 7 2s2) 72

In particular,
2251 < ko(X,2,R)2 < 47 L

A2 is known as the spectral gap of the graph.
It governs the speed at which a random walk on the graph is mixing. In particular, the
possibility of picking a vertex at random.

Morality. Normed chain complexes contain interesting information, beyond their mere
homology.
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Given a metric space X, a finite subset Y C X and r > 0, the Cech simplicial complex
Y: has a simplex (yo,...,yx) each time (); B(yj,r) # 0. Let C’ denote the simplicial
chains of Y,.
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Given a metric space X, a finite subset Y C X and r > 0, the Cech simplicial complex
Y; has a simplex (yo, ..., yx) each time (; B(yi, r) # 0. Let C’ denote the simplicial

chains of Y,.

Theorem (Bobrowski-Weinberger 2017)

Fix r < % and 1 < k < d. Let Y be an n-sample picked at random on the standard
d-torus. Then, with high probability, the k-homology of Y, coincides with the
homology of the torus as soon as

ward n> log n + k log log n,

and this fails if wgr? n < logn + (k — 2)loglog n. If k =0, the threshold is 2= log n.
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Given a metric space X, a finite subset Y C X and r > 0, the Cech simplicial complex
Y; has a simplex (yo, ..., yx) each time (; B(yi, r) # 0. Let C’ denote the simplicial

chains of Y,.

Theorem (Bobrowski-Weinberger 2017)

Fix r < % and1 < k < d. Let Y be an n-sample picked at random on the standard
d-torus. Then, with high probability, the k-homology of Y, coincides with the
homology of the torus as soon as

ward n> log n + k log log n,

and this fails if wgrd n < logn+ (k — 2)loglog n. If k = 0, the threshold is 2~ log n.

Question. Can one say that the chain complexes C’ converge to some chain complex
attached to the torus?
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In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let By d# By and B; g By be normed chain complexes. The Banach-Mazur distance
BMDist(Bi, By) is the infimum of log(|F||F~1|) over all isomorphisms F : By — By
duch that Fdy = dhF.
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In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let By i By and B; g By be normed chain complexes. The Banach-Mazur distance
BMDist(Bi, By) is the infimum of log(|F||F~1|) over all isomorphisms F : By — By
duch that Fd, = d>F.

This is too restrictive: this implies dim(B;) = dim(B).
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The second idea is too measure the size of homotopies.

Definition

Let By d# B and B> g) By be normed chain complexes. Consider all bounded
homotopies, i.e.

@ bounded morphisms F; : By — By and F» : By — B; such that
oFy = Fdi, diF = Fd,
@ bounded operators Q1 : Bi — By and Q; : B, — Bj such that
1-FRF=dQ+Qd, 1-FF=dQ+ Qd.

Let g = max{|Qi1]|,|Q2|}, f = max{1,|Fi||F2|}. The homotopy distance

f'
HomDist(Bi, By) is the infimum over all homotopies of min{g + log f, — + log q}.
q

v
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The second idea is too measure the size of homotopies.

Definition

Let By ‘A B and B> g) By be normed chain complexes. Consider all bounded
homotopies, i.e.

@ bounded morphisms F; : By — By and F» : By — B; such that
oFy = Fdi, diF = Fd,
@ bounded operators Q1 : Bi — By and Q; : B, — Bj such that
1-FRF=dQ+Qd, 1-FF=dQ+ Qd.

Let g = max{|Qi1]|,|Q2|}, f = max{1,|Fi||F2|}. The homotopy distance

f'
HomDist(Bi, By) is the infimum over all homotopies of min{g + log f, — + log q}.
q

v

The weird expression guarantees a triangle inequality.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B, Null), NH(B) = |d~!|.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B, Null), NH(B) = |d~!|.

Fact. ND is continuous. NH is continuous on the complement of Null.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B, Null), NH(B) = |d~!|.

Fact. ND is continuous. NH is continuous on the complement of Null.

Remark. ND is a function of NH for prehilbertian complexes, but not in general.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B, Null), NH(B) = |d~!|.

Fact. ND is continuous. NH is continuous on the complement of Null.

Remark. ND is a function of NH for prehilbertian complexes, but not in general.

Definition

Let B be a normed chain complex. Let B = B/Ker(d) and d : B — Im(d).
The singular values of B are the numbers

oj =inf{s >0;3LC B subvectorspace such that
dim(L) > j and VX € L, |dR| < s|%|}.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B, Null), NH(B) = |d~!|.

Fact. ND is continuous. NH is continuous on the complement of Null.

Remark. ND is a function of NH for prehilbertian complexes, but not in general.

Definition

Let B be a normed chain complex. Let B = B/Ker(d) and d : B — Im(d).
The singular values of B are the numbers

oj =inf{s >0;3LC B subvectorspace such that
dim(L) > j and VX € L, |dR| < s|%|}.

Fact. Each o; is continuous in homotopy distance.
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Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.
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Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.

Example. The (de Rham) complex of smooth differential forms on a smooth compact
Riemannian manifold, in its L2 norm, is precompact.
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Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.

Example. The (de Rham) complex of smooth differential forms on a smooth compact
Riemannian manifold, in its L2 norm, is precompact.

Fact. A prehilbertian chain complex is precompact <= its singular values form a
finite sequence that tends to +oo.

Proposition

Let B; be precompact prehilbertian chain complexes. Then B; converges to B <=
for every j, oj(B;) tends to o;(B).
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Analogy between normed chain complexes and metric spaces.

l

Metric space

| Normed chain complex ]

Gromov-Hausdorff distance Homotopy distance
Point ?
Bounded ?
Precompact ?
Compactness criterion (Gromov) ?
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Analogy between normed chain complexes and metric spaces.

[ Metric space | Normed chain complex ]
Gromov-Hausdorff distance Homotopy distance
Point ?
Bounded ?
Precompact ?
Compactness criterion (Gromov) ?

Let X, Y be metric spaces.

GHDist(X, Y) = inf{HDistz(i(X),j(Y)); Z metric space,
i: X —=Z,j:Y — Z isometric embeddings}.
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Analogy between normed chain complexes and metric spaces.

l

Metric space

[

Normed chain complex |

Gromov-Hausdorff distance

Homotopy distance

Point Null complex (i.e. d = 0)
Bounded ?
Precompact ?
?

Compactness criterion (Gromov)

Pierre Pan Université Pari

ing homology robustly: The geometry of normed chain complexes



Analogy between normed chain complexes and metric spaces.

[ Metric space [ Normed chain complex ]
Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d =0)
Bounded Homotopic to a null complex
Precompact ?
Compactness criterion (Gromov) ?

B is homotopic to a null complex <= ND(B) < co.
One can think of ND(B) = HomDist(B, Null) as an analogue of diameter.
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Analogy between normed chain complexes and metric spaces.

[ Metric space [ Normed chain complex
Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)
Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes
Compactness criterion (Gromov) ?

B is precompact = B has a finite sequence of singular values that tends to +oo
(<= if B is prehilbertian).
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Analogy between normed chain complexes and metric spaces.

[ Metric space [ Normed chain complex
Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d =0)
Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes
Compactness criterion (Gromov) 777

Definition

X precompact metric space, € > 0. The covering number N(X, ¢) is the minimal
number of e-balls that can cover X.
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Analogy between normed chain complexes and metric spaces.

[ Metric space [ Normed chain complex
Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d =0)
Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes
Compactness criterion (Gromov) 777

Definition
X precompact metric space, € > 0. The covering number N(X, ¢) is the minimal
number of e-balls that can cover X. )

Theorem (Gromov's compactness criterion)
A collection T of precompact metric spaces is precompact in Gromov-Hausdorff
distance if and only if there is a function v which serves as a covering number for all

spaces in T, i.e.
Ye >0, VXeT, N(X,e) <uv(e).
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Analogy between normed chain complexes and metric spaces.

[ Metric space [ Normed chain complex
Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d =0)
Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes
Compactness criterion (Gromov) 777

Definition

Let (B, d) be a normed chain complex that belongs to the closure of finite dimensional
normed complexes. Its profile is the smallest function

7w = (mg,7c) : (0, +00) — (0, +00)? with the following property. For every ¢ > 0,
there exists a finite-dimensional normed complex (B’,d") such that

HomDist(B,B') < ¢, dim(B’) < my(e), r(B',d") < mc(e).
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Analogy between normed chain complexes and metric spaces.

[ Metric space [ Normed chain complex
Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d =0)
Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes
Compactness criterion (Gromov) 777

Definition

Let (B, d) be a normed chain complex that belongs to the closure of finite dimensional
normed complexes. Its profile is the smallest function

7w = (mg,7c) : (0, +00) — (0, +00)? with the following property. For every ¢ > 0,
there exists a finite-dimensional normed complex (B’,d") such that

HomDist(B,B') < ¢, dim(B’) < my(e), r(B',d") < mc(e).

Theorem

| \

A collection of nonnull normed chain complexes is precompact if and only if a same
profile serves for all and the distances to null complexes are bounded below.
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Let B be a prehilbertian chain complex. Then the profile of B is determined by the

asymptotics of eigenvalues,

1
m4(e) < Card{A € spectrum(d*d); A < <}, 7c(e) <
€ €
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Let B be a prehilbertian chain complex. Then the profile of B is determined by the
asymptotics of eigenvalues,

1

1
m4(e) < Card{A € spectrum(d*d); A < <}, 7c(e) <
€

€

Let M be a smooth compact Riemannian manifold. Consider the (de Rham) complex
of smooth differential forms on M in its L> norm. Its profile satisfies wq(¢) < Ce=N,
where N = dim(M).
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Let B be a prehilbertian chain complex. Then the profile of B is determined by the
asymptotics of eigenvalues,

1

1
m4(e) < Card{A € spectrum(d*d); A < <}, 7c(e) <
€

€

Example

Let M be a smooth compact Riemannian manifold. Consider the (de Rham) complex
of smooth differential forms on M in its L> norm. Its profile satisfies wq(¢) < Ce=N,
where N = dim(M).

Conjecture

| A\

Consider finer and finer triangulations of a fixed compact manifold. The corresponding
complexes of simplicial cochains in their weighted ¢P norms form a precompact family.
”

Here, the weight of a simplex is a function of its volume.
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Let Y be a finite metric space. The complete simplicial complex Ay on Y takes as
simplices all tuples of points of Y. Pick a function of the diameter as a weight. Use
weighted ¢P norms on cochains. This gives a normed chain complex C (Y).
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Let Y be a finite metric space. The complete simplicial complex Ay on Y takes as
simplices all tuples of points of Y. Pick a function of the diameter as a weight. Use
weighted ¢P norms on cochains. This gives a normed chain complex C (Y).

The complete simplicial complex on 4 points.
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Let Y be a finite metric space. The complete simplicial complex Ay on Y takes as
simplices all tuples of points of Y. Pick a function of the diameter as a weight. Use
weighted ¢P norms on cochains. This gives a normed chain complex C (Y).

The complete simplicial complex on 4 points.
Let (X, ) be a metric measure space. Same construction with the same weight w

and LP(u1®") norms yields a normed chain complex C'(X).
Example. 1-cochains are functions ¢ on X x X. The squared weighted L2 norm is

o wllx =X Dletex ) dia) dux').
XxX
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Let Y be a finite metric space. The complete simplicial complex Ay on Y takes as
simplices all tuples of points of Y. Pick a function of the diameter as a weight. Use
weighted ¢P norms on cochains. This gives a normed chain complex C (Y).

The complete simplicial complex on 4 points.
Let (X, ) be a metric measure space. Same construction with the same weight w

and LP(u1®") norms yields a normed chain complex C'(X).
Example. 1-cochains are functions ¢ on X x X. The squared weighted L2 norm is

o wllx =X Dletex ) dia) dux').
XxX

Question. Given a metric measure space (X, u) and a finite sample Y C X. Does
C'(Y) converge to C'(X)?

Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



Online L@a,rmy\{,} wibh ExpowxiioJ l/\/@iodl/»/:s
v Mehie gPa,(‘,%
under the Measure Contrachon Pmperbd,

Quentin Paris

HSE Universw 7L7



Ouwrlene
Thnitoduclion

Onlene Learneng in IRP
ExPon,erv‘tLa,llc/ W&Cghbeol Avmg& (EWA) fore,c,a.s/-cr‘
Pe,rfo rmance a,n,a,lv SIS

Exponer&bﬁal k/acg%fs 'n  Melbuc Spaces
Ba,rlécen}crs

EWA foreca.sl—er A melwe spaces

Measwre Conftachon Pr‘oPa—
P@rforma,r»ce, of the EWwB :Forcc,a.sl'e,r‘

Jensen | neg u,a,UJtLA,

Alexandmov curvatvre bounds
Connection withv MCP P/wpm}g/
Alex (M) > 2 => Jensen ’s jne,olual,{/'j
Oloen, qu,esh'on



(]

[ nfrodwction




T nhrodawclion Online Le/a,rm'n,g in IR .

Clagcsical SeanP



T nhrodawclion Online Le,a,rn(n,g I _)_F\)F

Clagsical Se,'lLu.P —> M CIRP conveX



T nhroduction

Clagsical Se"'u,ID —> CIRP conveX

—> . Sef in Conve x i@ossll fuwh'ong
L M—-R



T nhrodawclion Online Le/a,rm'n,ﬂ I iRP

,P

Clagsical Se‘l”u,'b —> c K conweX
—> : Se,'l' of convex i&)ss// fuwh'ons
L M- R

Ke/pm/{'w{ game
For all t > 1



T nhroduction

.P

Clagsical Se"'u,ID —> c K conweX
—> . Set in Conve x i@ossll fuwh'ong
L M- R

K&pwfeo{ game

For all € > 1 > Plcujef chooses <€ M



T nhroduction

.F

Clagsical Se"'bLID > c R comweX
s - Set of convex loss' Funchions
L:M—=R
Repeated game
For all t > 1 —  Player chooses €M

I\ /)
— Environment  reveals ex



T nhroduction

.F

Clagsical Se+ULP — Cc K conveX
—> . Set oi,p convex i@oss” fuwﬁ'ons
£ M—=R
Repeated game
For all € > 1 > Plcujef chooses <€ M
I\ ' y
> Environment  reveals ex
s PICLLO,{L’J‘ Ancwrs  Aoss

a,nd movel on- 7LO Vl,e,)({' r‘ou.no/



T nhroduction Online Le/a,rh,(n,ﬂ I _U:\?P

P@rformouwe, measSure Reqref
W h-
S S 4 (x)_inf = Mwﬁ
(ﬁ’;"f“@n/) ex” { t=i %ﬁfM t=i



T nhroduction Online Le/a,rh,(n,g I ﬂi\?F

P@rformouwe, measSure Reqref
W h-
S S 4 (x)_inf = %E(u}
(ﬁ’;"f“@n/) ex” { t=i %fM t=i

-
O,
Encodes @ Cemuwlative  loss of lejer‘




T nhroduction Online Le/a,rh,(n,g I ﬂi\?F

P@rformouwe, measSure Reqref
"~ 4, (a) N
= Sw Z L) - Ln Z— '6 ”b) }
(!&:,...Fjﬂ,v) ex” { t= F %fM t=) ¢
- ) W,

v

O, @
Encodes @ Cemuwlative  loss of lejer‘
@ ComPefELHve, benchmark



F
T nhroduction Online Le/a,rh,(n,g in IR

P@rformcuwe, measSure Reqref
n n
S S 4 (x)_inf = a(u}
(«Z’;"f“@n/) ex” { t=i %efM t=i g
“ ) —__ _J

), @ @
Encodes @ Cmulative  loss of Plaxjer‘
@ ComPefELHve, benchmark

\
@ \‘/\/orsf' ca,se," Fo{m,l' 0? view



Tntroduction EWA Horecaster
Ex Ponor\;[ka,“\/ »\/&-31’\}@/6[ Ave,m,%e/ ( EWA ) :rpormsl-er



Tntroduction EWA Forecaster
Ex Fonor\;[,(a,ll\/ ‘l\/&gh}e,c[ Ave,ra,%e/ ( EWA ) :rporwa.sl-er

. ASSUJYL& M C[RP /L.S a convex bod\f



T whodwction EWA —orecas /‘e/r‘
Ex po nor\;ua,ll\/ ‘/\/&3 hted Ave,ra,% e ( EWA ) :rpormsl-er

° ASSUJYLC M C[RP /L.S a Convex bod\f

., Define

")(t_ ::J Ax mt(ol%>
M



T nhroduclion EWA ‘_fo recas ke~
Ex Fowr\;u.a,“\/ V\/&glf\}cd Ave,ra,%e, ( EWA ) :rpormsl-er

° Asswmc M C[RP /L.S a Convex bod\/

., Define

")(t_ .‘:J Ax mt(ol%>
M

m1 Sl ’U,ni,fM



Tnhroduwction
ExFon@V\/’lLa/lly V\/{’Agh}eﬁ{ Ave,ra,%e/ ( EWA) :rpore,wvsﬁer

Assume M C[RP AS @ convex bool\f

., Define

")(t_ .‘:J Ax mt(Ol%>
M

m1 Sl uanM

exX — /éb(fnJ
n,, (d=) = P ; / m, (d)
C+1



Tnhroduwction
ExFon@V\/’lLa/lly V\/{’Agh}eﬁ{ Ave,ra,%e/ ( EWA) :rpore,wvsﬁer

Assume M C[RP AS @ convex bool\f

., Define

")(t_ .‘:J Ax mt(Ol%>
M

m1 Sl uanM

exX — /éb(fnJ
n,, (d=) = P ; / m, (d)
C+1






T nhroduction

Remarhks

6XP (_ ’ér': (%))

m, (do)
‘%tﬂ

m_tﬂ(ol%) =

—5 Nalicrally promotes dewcsions mth  small
cwmu] octive  loss



T nhrodwction
Remarhks
6XP (_ ’ér': (%))

m, (c/oL)
‘%tﬂ

m_tﬂ(ol%) =

—5 Nalicrally promotes dewcsions mth  small
cwmu] octive  loss

14

— P&,:]?or*rmal\.c,e amlt/%(s Sl'mpl,[fu'eol /37 +he “e%p



T nhroduction

Remarhks

6XP (_ ’éb (%))
2{:+I

m_tﬂ(ol%) = m{: (JOL)

—5 Nalicrally promotes dewcsions mth  small
cwmu] octive  loss

14

— P&,for*rrwu’\,ce aml«/%(s Slrmpl,c‘fu'eol 137 +he “COLP

— ’The,oreiicr:axl y otfrachk ve for- non - ewelidean
%cne/r“a,b. sahon



T whroduction

F?e,%r@t wpper - bouwnd

Thm (Ha%a,m/ Aga,rwa,l & Kale 2005}—)

Acsume ever«j/ ﬁex LS (5 - e,xlocor\,ca,ve,.

Then ¥ n > 1 , +he EwWA :Fore,ca.sf‘ef wihvL
lca,ra,me)-e,r- (5 sa,Hsfn'e,s
RW ,\f E In n

P




T whroduction

F?e,%r@t wpper - bouwnd

Thm (Ha%a,m/ Aga,rwa,l & Kale 2005}—)

Ascume everuy ,@ e is P - exfpconcave .
Then ¥ n > 1 , +he E WA .—r?ore,c:ps%cr Wi L
lca,ra,me)-e,r- (5 sa,Hsfn'e,s

R < E,@WVV

w o F)




T whroduction

Exp Con/(la/vﬁl'(f ve Convexi L&

Rm k

( {’o— expconcave , /b>o> = > Convex

X — S]’rongl% o nve X
+ > _=> — - @xPcOruca,ve,
< L — Lt:,csclm«:”i’- Ll




T nhroduction

Cla,sséca,l a,n,a/l\/sfs re/[:'e,s u.Pom/ .

A . Gibbs vauolional Puma'ple,
2. Jenscen's l'nc,clua,hll'lj/
3 . ID/LOP%!"\'@/S’ e*ﬁ the Le,be&‘?/we_ meo Sure.

£

( Acnvf, %, € nz,", e€lo17.
A%O = f(l—z)%o-;- sx i x € A}




Expon,e/ml'l'a,l M/u'gluls Arn- Mefre Spaces



Exporential Wa',?lu"s in (md)
Consider ~> (M, d) metuc Space
— Fa,vvu.,(j ol of Poss fu,nc/‘)'ons - M- R



Exporential Wu',?lu"s in (md)

Consider ~> (M, d) metuc Space
— Fa,vvu.,(j ol of Poss fu,nc/‘)'ons - M- R

Online Learring, Problem.
YEx A _, Player picks xp eM
—» Environment reveals V€ X
- Player uncurs doss Ly (ny) and

moves on To nexlt rownd



Exponential Wulgl«is in (md)

Consider ~> (M, d) metuc Space
— Fa,vvu.,(j ol of Poss fu,nc/‘)'ons - M- R

Online Learring, Problem.
YEx A _, Player picks xp eM
—» Environment reveals V€ X
- Player uncurs doss Ly (ny) and

moves on To nexlt rownd

Hueshons 5
— Keasonable =,

5> Which (M, d) =% Small R, 2



Exporential Wa',?lu"s in (md)

Consider _, (M,ol) metric space
5> mn proba,bCU.H, measure on M



Exponential Walgkis in (md)

Consider _, (M,ol) metric space
5> m proba,bCU.H/ measure on. M

Def m e@_(M),gﬁ YaeM -
IM olz(%/tat) m(c(n}) < + o0




Exponential W&L?M's in (md)

Consider _, (M,ol) metric space
5> m proba,bCU.H/ measure on. M

Def m e@_(M),gﬁ YaeM -
IM o‘z(%/%{) m(c(n}) < +

De? %*é[\/l ba,rcjce,M?,r of m € EB(M) ,(:f

* , 2
x £ ij"’:";l [d (%y) m(dy)
" M




Exporential v\/u'glful's in (md)

EWA Hdorecaster in meluic spaceS



Exporential v\/u',?lfd's in (md)

EWA Horecaster in metiic spaceS

S'e/le,CI' a I;‘)rt',or L. € E(M)



Exporential v\/ulglfd's in (md)

EWA Hdorecaster in metiic spaceS
Select a Prdor m € BE(M) and select

nL ba,rcgce/n/l-or oﬁ mt



Exporential Walglfw"s in (md)

EWA Horecaster in meliic spaceS
Select a I:)rtlor m € BE(M) and select

%t, ba,mjce/n,lwr Oﬁ m(_: where

EX — /6 (%)
P( = ) m, (d)

mtﬂ(d%) = 2_
E+1



Exporential Wa',?lu"s in (md)

EWA forecaster in meliic spaceS
Select a I:)rtlor m € BE(M) and select

%t, bO«F(jC&V\/'"OF‘ Og m(_: where

l’YL1 = v
exp (_ /ﬁb(%)>
mt+|(d%> = P m_ (JOL)
C+
Ruwesbon

P@rfor'm,a,nce, <Qa?rel:) of EWA <n terms o/,p
%wmef;u;c PA»OPUWS 0]-0 (/V/, C// m) ‘7



Exporential Wu',?lu"s in (md)

Geodesic Spoaces

Def (M, d) called geodesic £f -

¥ %, x, €M I ¥ Lo I—>M st

— X(f?):ﬂlo, Y(4)=%4

Lo ¥t o d(YE), YY) = [s-t] d(7, %)




Exporential Wu'gld‘s in (md)
Geodese I’Lomo‘{'l'l-a/’\/



Exporential Walglfd's in (md)
Geodesic I’Lomo‘,‘lﬂ-e/'y
Consider (M, d’m/) and suppose



Exponentiol weights in (M,d)
Geodesic homothehy

Consider (M, d m ) and suppose
> (M d) geodesic



Exponential Walgl«is in (md)
Geodesic I’Lomo‘,‘lfueh/
Consider (M, d’m/) and suppose

— (M,d) %wo(um'c
—> Ne,gtéﬁea,bte, cwkb-loc : ¥reM

({ eM J snique B/,n’ﬂ:[o,«]—ﬂ\/l
M :
d ?cod. from, 2 bo Y

Il



Exponential Wa',?lfd's in (md)
Geodesic l’LomoH'Lei‘L/
Consider (M, d’m/) and suppose

— (M,d) %600(2,9\.'(’,
—> Ne,g(,éﬁea,bte, cwkb-loc : ¥reM

({ eEM . I snique X"rﬂzto"j—)M } 1
™ d ‘?wd.fmm,%f:og )_

(De,f ( Geodesic l’\»omoH’ve{'j )
For A CM , L €M and &£ G[o,l]

":w%,am yeM |




Exponential Walgkis in (md)
Geodesic I’Lomo’,‘lfueh/
Consider (M, d’m/) and suppose

— (M,d) %600(2,9\.'(’,
—> Ne,gf,iﬁea,b(z, cwkb-loc : ¥reM

({ VI T b)) =
14" . =
d ?cod. from, 2 to Y )

(De,f (Geode,gic l’\lomoH'veJ'j) \K (£>
For ACM |, €M and & €lo1] %Y

:{@w(g yeM |




Exponential Walgl«is in (md)

Measure  Controchion Properky (MCP)

Det. [ S-1. Ohta, 2006
i ( 2 p)>|, (M, d

For KER ! ond

MCP (K roperty AP !
o € M,’g?sep(oﬁ),‘yVAﬁcM
) ( ‘ <5d(7‘/“}))
m(A ) > & KAVP~1
A\ Tk \Vp-1

m) Sa.ﬁsfn'cs +he

-1
m(d%)



Exponential wagl«is in (md)
Measure  Controchion Properky (MCP)

Def. (S-I Ohta, 2006 )
For KER and P> 1, (M d m) sa:l‘j.sfu'cs +he

MCP (K roperty AP !
V%éM,’g?sep(oﬁ),‘yVAﬁcM
p—1

. ( ‘ <5d(7‘/“}))
m(A%> > & / KAVPZT W\(d%)

dO‘/“l’)
T A \ 5K< P—1 )

N —




Exponential wa?lfd's in (md)
Measwure Controchon Pmperﬁy (MCP)

Def. (S-I Ohta, 2006 )

For KER and P> 1, (Mlo’,m) sa:fj.sfu'cs +the
MCP (K, p) pmoperty /Lff:
¥r€M ¥ee€ (o), "H#ACM

-1

) ( ‘ <5d(7‘/“}))
m(A%> > & KAVP~T W\(d%)

] <d<7‘/"4’))
A=)

Rem . gimﬁlw’ o\ef(m:l—{ows introduced by_
. Kuwae % Q,’LLOJ/G (2001, 2003 )

e Q{'UF% (2006




Exponential wd,?kis in (md)
Measure  Controchion Properky (MCP)

Rem . Ine,ct u,a,w'g o1

. ( < (50’(7‘/%))
m(A%) > & KAVP~ 1 M(d%)

J ( d(*/%))

A\ SK\VpP-1

Becomeg — 7 when (M, a’/m) 1o the

P_ dimenciona| Riemanian space form, 07?
, wiHo

Con,s}'a,rv{‘ Se,ct;on/a/{ cwrvatbire K

Riemancan distance d  and volume measure m




Exporential Walglfw"s in (md)

Mw:rv Mﬁow
MCP pm/oa}y - S’yan\ch Ricel Curvature

Lower Bound



Exponential Walgl«is in (md)

Macn juduwition
MCP P,uo,oa}y — Syn+hch'c Ricei Curvature
Lower Bound
Porm,a,lle
Thm (Ohf'al 2006 )

Assume . M comPlch Riem. mfo(
. d Riem. distance
hL Volume measSure

Then
12"6’1\/1 > K (Mlo{(m) Safn's:f/'cs
< =
dim M< p 7 mep (K, p)




Exporential Wu',?lu"s in (md)

Consider —» (M, d m )
—> EWA {O/L&COLS"CY‘, Pa/uavme}e,r and Prdor (g



Exponential Walgl«is in (md)
Consider —» (M, d, m)
- EWA {OA&C&S"CY‘, Pa/uavme}er and Pr'mlor g%
Thm (P 2021)
Suppose that

° A” ,662” are %COC‘_LSICCLHY - e,XPCom,c,a.vEL
° (Mldlm> SCLl'\'SfI'C,S MCP(KI/D> )
Then ¥n> |

R, < CK _P,()/n/m/
[




Exporential Walglfd's in (md)

EX&LmPle: Lo%_com,cowe Ianjors on IIZP y
e d%)

SwFPoge (M{o[,m): (lRP) 1['-'/12

/



Exponential Wulgl«is in (md)

Exa,mple: Locj_com,cowe, Ian,'ors on I@P y
e d%)

Su,FFoge/ (M{ o[,m ) = (.lRP) Il‘-'llz
Fact I“F Po+en}t'a,{ V' Ao l7_ exp concave +Hhren

/

_V '
CIRF/ l=-1, € dux ) /aaiésffes the
MCP(O, P-{—_’__) proper{;:a(

)




Exponential Wulgl«is in (md)

Exa,mple: Locj_com,cowe, Ian,'ors on I@P y
e d%)

Su,FFoge/ (M{ o[,m ) = (.lRP) Il‘-'llz
Fact I“F Po+en}t'a,{ V' Ao l7_ exp concave +Hhren

/

_V '
CIRF/ l=-1, € dux ) /aaiésffes the
MCP(O, P-{—_’__) proper{;:a(

)




Jensen I"’e’cf u,a,b}%



Jensen Compai;b&l(iuy
Alexandrov  curvatire bounds
Def ( Model spaces) +#z €IR, lef (Mg de )

be +he Ahug e 2 —dim . comfolcf‘a anol
sfmpLg connected Riemannian mamfold wi He
conskFont sechonal curvatvure =2

®x < 0O 2 = O k2 > O
HYPe,rbo[,C(L ,Dla,h/e/ Euclidea Euclidean
with distance mulhpled plane sphere
1’7 4//—_’3_6 0£ rodLus l/‘[‘.g
wi anqular

drshance



Jensen Com,pa:ubil(kz/
Alexandrov  curvatire bounds

Def et (M,d) be %e,ociLsfc and #EIR.
Alex (M) > = /Cf Y pa,y €M and
¥ Y:[Con] M %e,od,e,sfc cOmccHnﬂ 2% fo Y

d(p, ¥(6)) > dy (p, ¥(8))




Jensen Compai;b&l(ky
Alexandrov  curvatire bounds

Def Let (M, d) be %e,ociz,sfc and #E€IR.
Alex (M) > = /Cf Y pa,y €M and
¥ Y:[Con] M %e,od,e,sfc cOmccHnﬂ 2% fo Y

d(p, ¥(6)) > dy (p, ¥(8))

B (E)



Jensen Com,pai;b&l(HX
Alexandrov  curvatire bounds

Def Let (M, d) be %e,ociz,sfc and #E€IR.
Alex (M) > = /Cf Y px,y €M and
¥ Y:[Con] M %e,od,e,sfc cOm,nccHnﬂ % Fo Y

d(p, ¥(6)) > dy (p, ¥(8))

\6(6) ?((:>



Jensen Compai;b&l(hz/
Alexandrov  curvatire bounds

Def Let (M,
d) b
ﬁzlex(l\tfl)> ;: %j%dlﬁ;‘cp %Lrwl 68‘36112-
01— M %e,odx,s:c cOmnac,\anﬁavvtOIf‘
o Y

d(p, ¥(6)) > dy (p, ¥(8))

———————————————————— N ()
Y(E)

——_—.—_——.————_—-—.————_



Jensen  Compatibiliby
Connection fo MCP properhy
Thm (Kuwae '3 Sln,(on/a,ZOol and Ohta 2.006)
hssume that . Alex(M)> 2, 2 €R
M cOmpacl’

v M hasg _f(vu'h’, Hax,tsolorq_V dimension P>
Then (M, d, Ho) satiofren MCP ((p-D2e, p)




Jensen  Compatibiliby
Connechon to MCP Pm,a@r”lé/
Thm (Kuwae '3 Slr.,(on/a,ZOOl and Ohta 2_006)
hssume that . Alex(M)> 2, 2 €R
M cOmpacl’
+ M has [inte Hausdor[l dimension p > |

Then (M)ol/fH,P) /mff/t'ﬂfff/«) MCP((P—:)QBI,D)

EssenF}a/lly

Alex(M)}&o, |
— MCP ( (p-
O[/Cm-zt\/]):‘o } i ( P ')ao“)P>




Jeng enIS ,{:ne,c[ uua,(,«:/'y

De/ﬁ. Let (Mtd) be ﬁ,coo&sfc.
M Lo called Tensen C,omPa,Hblc ,{f
— ¥ :ﬁ:M_> R ?e,od, conve X
Y
e

M



Jensen Com,pa:bllaél(hz/

—J-ensen,s ,«Lne&(u.a,u(—\,/ i melwe S[oa.ces

» Kendal (1940)
- Eme:z/ % Mokobodzk( C[at‘fl)

- Stur 62005) '. Alex (M) <0

- Kuwae (2009) :  Alex (M) < 2 + small radivs
—> Kuwae (2014) : (Convex spaces

s Yokota (2016) Alex (M) 2 + small raddus

5> Kim & Pass (2016) = Wasserstein. space



Jensen Com,pa:ub;l(ky

AL@KCM) > 2 = \/a.(,::dx,'/-% o}p jenSean (n.e,clu.a,&'f'y,
Thm (P

, 2021 )

Swuppose (M d) io Polish and o
ot Alex Cl\l/l)); 2 :) Ny geodesic and such
Then ,Lf :{_’

° A0 COO(WL'CA,” conve X

o (L* baf%ce,n,-e/r of /J

. :E /@00&”7 LI'PSCJ'\J:"% af 2* ,

{(%*) < [{o‘/a/
M




Jensen  Compatibiliby

Observahion

Aex (M) » ® seems asking too mvch for our pbl
Queston

Su,,s,;»ose, (M{c{/m> sa.ﬁ'sﬁ'es MCP(K,[:)> anol
Constaer
. Zl€: M= R eodesically convex
Y, 4 )

o << m wiHnr ilﬁ)_ = & \/ e,oo[ convex
P am / 7

%* baxvc,e,n/,”ﬁr of /U
'The,n, do we have

1) < [ #4



For more details

N On/l(l"w/ Ie,oxm'ng with ex}:onen%'a/l we,ig}ﬂLs A
metriC Spaces

arxiv: 2103, 14389

/
_y Jensens ine,qu.a,l( Al %wdmc npaces with
lower bounded audvatvre

arxiw : 2011.0¢959%



MecrcL !



Exponential Walgl«is in (md)

Let (M d) be geodan'c
Cons(cle,r the EwW :IeOA.CCO..SI'CI witkh Pa_ra.me,('er
5 Prior (M)

1 hm ( Demidova 2 P , 2021 )
gula,oose . Al LEX are %ood_LSt'cale - eXpconcave

CM d) is Tensen compahble.

m> sa_l—wsf:e.s MCP(K p) @

/ﬂaaw 'H’\,e, EWB Zfore,c,a,S('cr WI'H'\, Pcu,a.mc/'cr a_no
Pnor'm ga;b,sﬁ-.c,s

Yn R, < _pP,@wn

E

/

-z
(>




Exporential Walglfw"s in (md)

T hm ( Demidova £ P.IZOZI )
glLID,DOSQ . Al LEX are cj,coc(_LSl'ca.”y - expconcave

. (M(ol) is Jensen compahble.
. (M,d,m) sal—\'sffe.s MCP(KIP) ) @

and ¢z Lnﬁ jW(d(’h,t*)J%)hﬂ(ch}) <4 o0

n €M
where () := 9 coth(in) exp <_ ncoth(n))

/rhe,h/ "H'\,e, EWB :forac,a.sl‘cr Wl"H'\, Fa/ua.mc/'e,r a_no{
IDFI:OF . ealls 6.@5
VV\/>,|1 R 41(24/€n1)+£,€nn/

n [5 - ﬂ;




Taylor expansion of geodesic triangles in Riemannian
manifolds: a central tool to study the effect of
curvature in geometric statistics

Xavier Pennec

Université Coéte d’Azur and Inria, France

Statistics in Metric Spaces
ENSAE, Palaiseau, 11-13/10/2023

ERC AdG 2018-2023 G- Stal‘lst/cs

3IA Céte d’'Azur

UNIVERSITE
COTE D'AZUR -

, - I . ; o FECR :
h%‘ W Freely adapted from “Women teaching geometry”, in
Adelard of Bath translation of Euclid’s elements, 1310.

Interdisciplinary Institute
for Artificial Intelligence




Application context: Computational Anatomy

Methods to compute statistics of organ shapes across

subjects in species, populations, diseases...
o Mean shape (atlas), subspace of normal vs pathologic shapes
o Shape variability (Covariance)

o Model development across time (growth, ageing, ages...)

Use for personalized medicine (diagnostic, follow-up, etc)

o Classical use: atlas-based segmentation

X. Pennec — ENSAE - 12/10/2023 2




Impact of geometry on statistical learning

Non-linearity is everywhere in data analysis
o Images, shapes, transformations, texture, segmentations...
o Computational anatomy : Brain, heart, liver,
o Other applications: shape of molecules, Gram matrices...

Healthy control Schizophrenic

Left Ventricle

Left Epicardium

Connectomics

Right Ventricle

Modeling at the population level:

o Simple statistics on non-linear Riemannian manifolds
o Frechet Mean, tPCA, PGA or GPCA

X. Pennec — ENSAE - 12/10/2023 3



Statistical Analysis of the Scoliotic Spine

[ J. Boisvert et al. ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009

tPCA on SE(3)16 with left-invariant metric * Mode 1: King's class | or [ll  +« Mode 3: King’s class IV + V
4 first variation modes have clinical meaning * Mode 2: King's class |, II, [l « Mode 4: King’s class V (+lI)

X. Pennec — ENSAE - 12/10/2023 4




Atlas ‘
Pat/ent 1 Patient 5
9

Lift statistics to transformation groups !2 ‘
o [D’Arcy Thompson 1917, Grenander & Miller] Patient 3 Pa“e”"‘
o LDDMM = right invariant kernel metric (Trouve, Younes, Joshi, etc.)

Diffeomorphometry

No bi-invariant metric in general for Lie groups

o Partial compatibility of Fréchet mean with the group structure:
o Frechet mean is not right invariant nor inverse consistent

o Examples with simple 2D rigid transformations

A natural bi-invariant affine symmetric space structure
o Symmetric bi-invariant Cartan-Schouten connection (non-metric)

o Geodesics through |d = one-parameter subgroups: M(t) = exp(t.V)

o Diffeomorphisms : flow of Stationary Velocity Fields (SVFs)
[XP & Arsigny, 2012 ; XP & Lorenzi, IJCV 2013, Beyond Riemannian Geometry, 2019]

o Automatically “inverse-consistent”

X. Pennec — ENSAE - 12/10/2023 5



Normal/AD modeling: Statistics on diffeomorphisms

SVF parametrizing the
deformation trajectory

B4 Patient specific
= - eodesic regression
m\r M\X/ g g

\J .
%

__'_ AU

Quadratus
(control)

Mean geodesic trajectory
for normal aging

'''''

Normal aging

mm/year
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Rutundus :
Mean geodesic

(Reference) trajectory for AD

Anatomical normalization: parallel transport (domain adaptation)

| &

Addition specific
component for AD
Triangulus

(Alzheimer) [ Lorenzi, XP. IJCV, 2013 ]

X. Pennec — ENSAE - 12/10/2023 [ Sivera et al, Neuroimage, 2019] 6



RIEMANNIAN Geometric statistics in 2020

GEOMETRIC Part 1: Foundations

o 1: Riemannian geometry [Sommer, Fetcher, Pennec]
STATISTICS IN o 2: Statistics on manifolds [Fletcher]
MEDICAL IMAGE o 3: Manifold-valued image processing with SPD matrices [Pennec]

o 4: Riemannian Geometry on Shapes and Diffeomorphisms [Marsland,

ANALYSIS Sommer]

o 5: Beyond Riemannian: the affine connection setting for transformation
groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
o 6: Object Shape Representation via Skeletal Models (s-reps) and
Statistical Analysis [Pizer, Maron]

o 7:Inductive Fréchet Mean Computation on S(n) and SO(n) with
Applications [Chakraborty, Vemuri]

o 8: Statistics in stratified spaces [Feragen, Nye]
o 9: Bias in quotient space and its correction [Miolane, Devilier, Pennec]

o 10: Probabilistic Approaches to Statistics on Manifolds: Stochastic

Processes, Transition Distributions, and Fiber Bundle Geometry

oromer, Tom Fletcher [Sommer]

o 11: Elastic Shape Analysis, Square-Root Representations and Their
Inverses [Zhang, Klassen, Srivastava]

Part 3: Deformations, Diffeomorphisms and their Applications

o 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-shapes, normal
cycles [Charlie, Charon, Glaunes, Gori, Roussillon]

o 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
o 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]

o 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
o 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

X. Pennec — ENSAE - 12/10/2023 7



Main questions of this talk

Statistics on manifolds based on Fréechet mean
o Uncertainty of its estimation: confidence region?

n Is there an impact of curvature on statistical tests?
o In practice: limited number of samples (50 to 100)

o How large should be n for asymptotic results?

Parallel transport algorithms
o Ladders algorithms appear to be very efficient

o Establish numerical accuracy beyond first order?

A common mathematical tool

o Intrinsic Taylor expansions of geodesic triangles

X. Pennec — ENSAE - 12/10/2023




Taylor expansion of geodesic triangles in
Riemannian manifolds: a central tool to study the
effect of curvature in geometric statistics

Motivations

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

Numerical accuracy of parallel transport algorithms

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport
on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022 ]

5
P
il

|

Conclusions

M\\\ i

1‘ 1
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Bases of Algorithms in Riemannian Manifolds

Exponential map (Normal coordinate system):
o Exp, = geodesic shooting parameterized by the initial tangent
o Log, = unfolding the manifold in the tangent space along geodesics
o Geodesics = straight lines with Euclidean distance
n Geodesic completeness: covers M \ Cut(x)

Reformulate algorithms with Exp, and Log,
Vector -> Bi-point (no more equivalence classes)

Xy-
Operation Euclidean space Riemannian
Subtraction x_); =y—x E =Log (y)
Addition y=X+Xxy y=Exp (xy)
Distance dist(x, y) = H y— xH dist(x, y) =|xy
Gradient descent X, =x-¢VC(x,) X, =Exp (¢ VC(x,))

X. Pennec — ENSAE - 12/10/2023 10



Statistical tools

Fréchet mean set
o Integral only valid in Hilbert/Wiener spaces [Fréchet 44] ‘ :

o MSD(x) = Trg(imz(x)) = fM diStZ(xr z) P(dz) Maurice Fréchet

o Fréchet mean [1948] = global minima of Mean Sq. Dist. (1876-1973)
o Exponential barycenters [Emery & Mokobodzki 1991]
M, (xX) = [, logz(2)P(dz) = 0 [critical points if P(C) =0]
Moments of a random variable: tensor fields
0 My (x) = [, log,(2)P(dz) Tangent mean: (0,1) tensor field

o W,(x) = fM log, (z) @ log,(z)P(dz) Second moment: (0,2) tensor field
o Tangent covariance field: Cov = I, — Iy Q M,
0 M (x) = [, log,(2) ®log,(2) ® - @ log,(2)P(dz) k-moment: (0,k) tensor field

X. Pennec — ENSAE - 12/10/2023 11



Asymptotic behavior of the mean

Uniqueness of p-means with convex support
[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11]

o Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]

n  Positive curvature: [Karcher 77 & Kendall 89] concentration conditions (KKC):
Support in a regular geodesic ball of radius r < r* = %min(inj(M),n/\/f)

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]

o Under suitable concentration conditions [KKC], for [ID n-samples:
n X, = X (consistency of empirical mean)
0 Vnlogg(X,)>N@O,H ' 2H™") if H= [ Hess; (%dz(y, f)) u(dy) invertible

o Problems for larger supports [Huckemann & Eltzner, H. Le, D. Tran]

Behavior in high concentration conditions?

o No expression for Hessian: interpretation of covariance modulation?
o What happens for a small sample size (non-asymptotic behavior)?
o Can we extend results to affine connection spaces?

X. Pennec — ENSAE - 12/10/2023 12



Curvature effects in Geometric statistics : empirical
Fréchet mean and parallel transport accuracy

Motivations for statistics on manifolds

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

o Asymptotic BP-CLT
o Small sample & high concentration expansion

Numerical accuracy of parallel transport algorithms

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport
on Manifolds. Foundations of Computational Mathematics, online 04-2021 ]

Conclusions

X. Pennec — ENSAE - 12/10/2023 13



Principle and difficulty

The empirical mean x,, of an lID n-sample with population
mean x is a random variable on M
o Locate X, in a normal coordinate system at x for a given empirical law

o Compute the moments of the empirical mean x,at x:
o Expectation at the population mean: Bias(x,) = E(log;(x,))
s Covariance matrix Cov(%,) = E(logz(X,) ® logz(%,))
o Compare with asymptotic BP-CLT for large n

Empirical and population means are exponential barycenters
o n-sample X, = %Zi(Sxi —> tangent mean vector field is M, (x) = %Zilogx(xl-)

o Locate the zero x,, - Taylor expansion of log, (y) for x,, = exp,(v)?

X. Pennec — ENSAE - 12/10/2023 14



Riemannian distance derivatives
How does the (squared) distance (Synge’s world function)
vary with endpoints?
o First order derivatives is easy
D, (dist?(x,,y)) = =2 log, () with x;, = exp,(v)

o Higher order derivatives begin to be quite involved:
Taylor expansion in normal coordinates (Grey 1973, Brewin 1998, 2009)

D(v) = dist? (exp,(v).y) = |lylIZ + D v + Dga,g,fe)”"ub + D,a,bcfe,""v”v" + DE(,,Mv“wbv”ﬂd + O(e"),

D;a = 2y,
1 c,,d 1 c,d, e 1 e, d e f g
D,(Lb = Yab — gny Ru.r,:bd - Ey Y y)vdR(L(ibC - @Uy vy (44R;_g“fRijbd - Sve,]’Racbd)
1 \ 1 56 . .
D,a.bc = _EydyLVCRaebd =+ @yjy 'yj (vdaRbfce - 2vadR17fCP + 32Rj’_hERgacf)
1 e
- ﬁd‘dyyfyq (SRQvath,bcd + ngafvthgcd + QOR?afvahgrd - Gszevah,gcd)
1 g g .
D,abcd = +7y€yf(8Richgabf - gvcdRacbf * SRgacRgcbf + gvchufbc - 44]?5& 'Rycbc - 5vdbRccc1f)
180 b
L o i ) ) ‘
+ 4_5ycyf Uq (4Ricfvaﬂ'h.bd_q + 4Rizacvah,fdg + 4Riagvf Rh.bdy - 3Vdm.tRbfcg)
1, t
+ mytyfyq (SRiafvdRh-bC.G’ + SRfEafnghbf’f + gRsufvh,Rderj + gRgcafvth{lC"

—+ QORsﬂfvahdcg + QORgﬂfvahgce - 6R2hgvahdcg - 6HZ’bgvdRh,gcf)

o Problem: log, (v) € T,,M and not to T,M: many terms due to Dexp, (v)
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Taylor expansion of geodesic triangles

Key idea: use parallel transport rather that normal chart to relate T,M to T, M

Gavrilov’s double exponential is a tensorial series (2006):

h(vu) = log,(z) _Z = exp(u,) hx (v,u) = log (expy, (IT" )

1 1
AN =v+u+gR(u,v)v+§R(u,v)u
u N\ =11V 1 1
u, =1L’ u + 57 WR@w v) (2v + 50) + 2 VR, v) (v + 2u) + 0(5)
X v y = expy(v)

Neighboring log expansion [XP arXiv:1906.07418, 2019]
Xy = eXpy(V)
log, (eXp,(W)) L (v,w) = Iy, logy, (exp, (w))

1 1
W =w—v+gR(W,v)(v—2w)+ﬁ|7vR(w,v)(2v—3W)

~~~~~~~~ 1
~~~~~~ +—V,R(w,v)(v — 2w) + 0(5)
‘‘‘‘ y 24
L (v,\w) =TI, *log, (exp,(w))
Torsion free affine manifolds
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Taylor expansion of recentered mean map

X, = exp,(v) is an exponential barycenter if 9t,(x,) =0
0 N () = 0F, My (xy) = [, 115, log,, (y) u(dy) has a zero at v = log,(x)
o I, is a tensor field, %, is an analytic endomorphism of T, M

Taylor expansion with neighboring log:
N, (v) =M —v+ %R(ﬁﬁl,v)v — %R(*, v) *: MG + %(VUR)(%LU)U

1 1 1
+ 57 R )y i IR — 2 (BR)(, v) +: MG" — = (VR)(x, v) #: W™ + 0(e)

Solve for the value v = log,. (¥) zeroing-out the polynomial
1 1
log, (%) = My — 2 RCx, Wy) » 2 My + o7 (MR (+, M) My + W’

1 1
-5 (Vg R) (%, Dy) + = My" — 75 (R Cx, M)+ M3 + 0(g>)
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Expectation for a random n-sample

. 1 : n
For one empirical n-sample X, = ;Zi 8., with moments X

o Togy(Fn) = XY = SR(x X4) ¢ XJ + 2 (RR)(x XX+ X3
L (T R) (e XY 5 X3 — L (LR)(x, X + 2 X1 + 0(e5)

Take expectation for a random IID n-sample
0 E[X;(x)] = Dy (x)

~1 1
0 IE[%? ® %3] = nTmmq Q@ Mpiq + ﬁimpﬂl
o Etc...

Moments of the empirical mean at the population mean:
0 Bias(f,) = E[logz(£,)] = 5z (WR)(x0) o M3 - M3 +0(e%)

a COV(fn) - [E[logf(fn) ® logf(fn)]
_ %gmz _ Z_;Zlmz;* (6@ R(%,0) * +R(%,0) * Qo) : My +0(&°)
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Asymptotic behavior of empirical Fréechet mean

Moments of the Fréchet mean of a n-sample
o Surprising Bias in 1/n on the empirical Fréchet mean (gradient of curvature)

1
Bias(x,) = E(logz(x,)) = o (M,: VR:M,) + 0(e® 1/n?)

o Concentration rate: term in 1/n modulated by the curvature:
1 1
Cov(x,) = E(logz(x,) ® logz(x,)) = Eimz + gimz: R: M, + 0(e>,1/n?)

o Negative curvature: faster CV than Euclidean
o Positive curvature: slower CV than Euclidean

Central-limit theorem in manifolds [Bhattacharya & Bhattacharya 2008; Kendall & Le 2011]
o Under Kendall-Karcher concentration conditions:
D
Vnlogz(x,) > N(O,H 1 X H™Y) if H = Hess( MSD(X,%,)) invertible
n Hessian of mean sq. dist: %17 =Id + %R: m, + 1—12|7R: Ms + 0(e*, 1/n?)

o Same expansion for large n: modulation of the CV rate by curvature
(but our non asymptotic expansion is valid for small data as well)

X. Pennec — ENSAE - 12/10/2023 [XP, 2018, ARXIV : 1811.01370 ] 19



Isotropic distribution in constant curvature spaces

o Symmetric spaces: no bias at order 5

2
» Modulation of variance w.r.t. Euclidean: Var(x,) = a —

n
High concentration expansion oh ], &=t
o a=1+ % (1 — %) (1 — 1) Kol + 0(65) No CV for uniform
" distrib on equator
Asymptotic BP-CLT expansion .. Asymptotic modulation of the speed of convergence
(1 1\ 7\ 2 2
. a—(5+(1—5)h) +0(n™?) .

3

Archetypal modulation factor

!

!

|

o Uniform distrib on S(x,0) c M, !
tan?(Vk02) n!z
T

dulation factor a

1+
S 24
<

M

large n, large d: a =
g 1 g K'QZ ol : . : ' '
Kglzi—nloo a :_50 - Var;ice—cur\f_afure para_rieterxezo '
B |
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Convergence rate modulation factor, sphere dim=3, n=2 Convergence rate modulation factor, sphere, dim=3, N > 5
94 —— sSmall variance prediction pal p— Small variance prediction \
—— Asymptotic prediction —— Asymptotic prediction
81 —— Measured 104 — N=10
N=20
77 —— N=50
— N=100

Small variance
w.r.t. curvature

Modulation factor a
[}
i
Modulation factor o
(=]
1

High sample siz
Low & large varia

Positive curvature

T T
0.2 0.4 0 0.8 1.0 1.2 1.4 1.6
Standard deviation 8

1 1.0 1.2 1.4 1.6
ard deviation 68

Accurate expansion even with small sample  Accurate asymptotic expansion

Convergence rate modulation factor, hyperbolic space dim=3, n=2 Convergence rate modulation factor, hyperbolic space, space dim=3, N > £
GJ 124 —— Small variance prediction 124 —— Small variance prediction
Pl ' —— Asymptotic prediction ) —— Asymptotic prediction
oD —}— Measured —_ N=10
© 1.0/ N=20
— N=50
E 2 5 N=100
=] e
S5 8 £ 08
O = £
2 £
)] 5 S 0.6
= i
> b= =
=T :
r—
) = 04+
% 0.2 1
0.0 T T T T T T
0 1 2 3 4 5 0.0 T T T T T
[ | Standard deviation & 0 L 2 3 5

Standard deviation 8
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Boostrap on real spherical data from
[Fisher, Lewis, Embleton 1987]

B15: high isotropic dispersion (stddev 32°, bbox: 76°x63°)
o 94 orientations of dendritic fields in cat’s retinas [Keilson et al 1983]
o High dispersion, KKC on the sphere

Fisher B15 Modulation of convergence rate for spherical dataset Fisher B15

=
[
Y

=
=
rJ

=
[
(=]

——- Isotropic small variance prediction

2 102 - ——- |sotropic asymptotic prediction

—— Anisotropic small variance prediction
1004 | —— Anisotropic asymptotic prediction
—— Measured

— : —— : ——
100 10! 102
Number of samples

o Visible modulation (isotropic formulas are good)
o Small sample expansion behavior is well predicted
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Boostrap on real projective data from
[Fisher, Lewis, Embleton 1987] ™"

L] u u L] (—1.00
Fisher B1: high dispersion s
o 50 pole positions from Paleomagnetic Lace
study of new Caledonian laterites v
(Falvey & Mustgrave) o
1560
g8
. _1'090'?50'5%25’-000-250.500,751_00 1%%%%3
Spherical (not KKC) Projective (not KKC)
n Stddev 41°, bbox: 98°x 67° o Stddev 40°, bbox: 86° x 76°
o Small var and asymptotic OK o Prediction fails: smeary mean?
Modulation of convergence rate for spherical dataset Fisher B1 Modulation of convergence rate for Projective dataset Fisher B1
g 1.20 --___:----+ -|-|--| ----- |-_i ------ JA g 2:25*
g 115 - " g 2.00 1 -:: SOl rogic asymptotic prediction
a - a e tropic small variance prediction
ug 110 HE 1.75 —— Anisotropic asymptotic prediction
£ g —+ ™ d
I o
f T ppronc el reoton | e
= —}— Measured ! 1.007 W
o Nun}l?elr of samples o o Nun}l;)e]r of samples o

X. Pennec — ENSAE - 12/10/2023 24



Taylor expansion of geodesic triangles in
Riemannian manifolds: a central tool to study the
effect of curvature in geometric statistics

Motivations

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

Numerical accuracy of parallel transport algorithms

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport
on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022 ]

Conclusions
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Normal/AD modeling: Statistics on diffeomorphisms

SVF parametrizing the
deformation trajectory

B4 Patient specific
= - eodesic regression
m\r M\X/ g g

\J .
%

__'_ AU

Quadratus
(control)

Mean geodesic trajectory
for normal aging

'''''

Normal aging

mm/year
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Rutundus :
Mean geodesic

(Reference) trajectory for AD

Anatomical normalization: parallel transport (domain adaptation)

| &

Addition specific
component for AD
Triangulus

(Alzheimer) [ Lorenzi, XP. IJCV, 2013 ]
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Discrete approximations of Parallel transport
Schild’s Ladder [Schild’s lectures at Princeton 60ies, Elhers et al 1972]

xv
v
X w X1 Xy X3 X4

o Build geodesic parallelogramme
o Iterate along the curve
n One step is a 18t order approximation [Kheyfets et al 2000]

Pole ladder: [Lorenzi, XP, JMIV 50 (1-2), 2013] ;\[\
X

o Simpler method with piecewise geodesics ”
o Closed form expression for Cartan connection on Lie groups

o One step is of order 4 in general affine manifolds [XP, Arxiv 1805.11436, 2018 ]
pole(u) = T(u) + % V,R(u,v)(5u — 2v) + % V,R(u,v)(v — 2u) + 0(5)

o Exact in symmetric spaces (transvection)!

- No approximation formula beyond 15t order for SL
- No results for the iterated SL and PL schemes
- No results for approximate geodesics
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Convergence of Schild’s Ladder

Gavrilov’s Taylor expansion of one Schild’s ladder step
o A new Taylor series for mid-point rule

2a =w+v+ = R(vw)(w—v)—l—O() x"M
u—uw:—Rw@O - ”uw

Convergence of the iterated Schild’s ladder

T >

Xiv1 Wi+t Xivz Wiss

Vi+1 ' SChild(S'Z@', %,,

Theorem: the scheme converge at speed |[[vn — IT;"v

B

.

<ot s

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds.
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]
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Convergence of Schild’s Ladder

Numerical experiments in controlled spaces

absolute error with respect to the number of steps longitudinal error
0054 -&- a=1 @
o- a=15 State of the art o —0.0001 - %@%&
-o- a=2 /,f" .
4 -~ Q
0.04 —0.0002 - e,
- ‘@.'
e Q
-~ 8
. . —0.0003 "
0.03 )
3] B,
—0.0004 -
0.02 1 AP Our result haNy
m/g - e
s ) g —0.0005
0.01 1 o HU-__,--Q" ‘a‘\
o? o0 B —0.0006 o,
ﬁ _g-0-F PR &=
0.00 - 8 6-o-0---0—0C "
0.00 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10
1/n 1/n
Simulations on the sphere: Simulations on the space of SPD
constant curvature matrices: negative curvature

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds.
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]
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Convergence of pole Ladder
Taylor expansion of one pole ladder step

pole(u) = I(u) + % V,R(u,v)(5u — 2v) + % V,R(u,v)(v — 2u) + 0(5)

Convergence of the iterated pole ladder

y
Theorem: the scheme converge at speed ||vn, — ILI;;"v|| < 5

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds.
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]
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Convergence of pole Ladder

Numerical experiments in controlled spaces

Anisotropic metric on the Lie group SE(3) Kendall shape space 23

absolute error with ¥éspect to the number of steps Absolute error wrt number of steps, k=4, m=3
0.00071 4 g=1.0 o 1 e
-o- B=15 e
0.0006 - O X Schild’s o=1
: -6- B=2.0 s 1 T T T
s -2 | S “mese e
-o- B=2.5 10799 e o S e
0.0005 A d’ o ] “X“‘-. '3'4-.““‘“ ""H-..,_%__‘hx i SR
L ] % ~a T
# - -3 S . By N
- 1073+ faa % Euler
0.0004 A ] B el Teen
f e 1 T He Sy
- ) 1074 - T % o
0.0003 - . ] el A T
& e o ] *_ x._ _‘\\‘x
i T 105 4 RN, P %
0.0002 4 g o { -%- Pole Ladder, a=1 RN RN %,
. - ] ) -~ . x
- T ] -%- schild Ladder, a=1 ~+._ .
_ e - 10763 . ; _ e %o
0.0001 - ’__‘_,@' ] - Schild Ladder, a=2 . »
-z ::::g-"'"'e 1 -+- Pole Ladder, a=2 Pole ladder ‘h\“_‘h
0.0000 - g8 -0 B =@rmonomnmnn= Br=mmmmns=- 9 1077 § -%- Integration, Euler R
T T T T T — T T T — T T T T — T
0.02 0.04 0.06 0.08 0.10 1oL 10 103
l/n n

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds.
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]
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Approximate geodesics & other schemes

Approximated geodesics &
o Integration using Runge-Kutta A\

[ Jogas

o Compute the log by gradient descent

o Convergence results remain valid with
sufficiently accurate numerical scheme

Fanning Scheme [Louis et al 2018]

o Can be analyzed similarly

o Cannot ne made 2" order

2

u

lvp = "0l < =
n

h?
IB E =1;-|-%R(w, U)W+O(h3)

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds.

Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]
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: a python library to implement
generic algorithms on many Riemannian manifolds

Specific & generic manifolds

o Exp/Log map to generalize Euclidean tools
o 20+ specific manifolds / Lie groups with

closed-forms (SPD, H(n), SE(n), etc)

o Generic manifolds with geodesics by
integration / optimization

Algorithms

o Fréchet mean, geodesic regression,

tangent / geodesic PCA, Riemannian k- [ Glssiitinn_}— MinimunsianceTebiean +—

means, mean-shift, parallel transport
o scikit-learn APl (GPU & learning tools)
o Collaboration with pyriemann for BCI

N. Miolane N. Guigui. | A. Le Brigant X. Pennec
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L 1
VectorSpace ‘ ‘ OpenSet | LevelSet

Euclidean GenerallLinear SpecialCrhogonal +—
SymmetricMatrices PoincareHalfSpace < —— > SpecialEuclidean <+—
LowerTriangularMatrices PoincareBall +— Stiefel <—
Matrices FullRankMatrices <—| Grassmannian <—
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MatrixLieGroup P
MatrixLieAlgebra CorrelationMatrices <—
— PreShapeSpace —
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— SRVShapeBundle DiscreteCurves

v
FiberBundle

BaseEstimator ExponentialBarycenter
FrechetMean
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S WrappedGaussianProcess +——|

SkewSymmetricMatrices
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SpecialOrthogonal
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L. Pereira. |J. Deschamps. A. Myers. J. Mathe  A. Calissano

and many more collaborators
E— |
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http://geomstats.ai/

: a python library to implement
generic algorithms on many Riemannian manifolds

# > Geomstats View page source

GitHub

e Python package for computations and statistics on nonlinear
i is beyond the scope of this documentation.
's a smooth subset of the Euclidean space.
the space of 3D rotations.

o 10 introductory tutorials

o~ 35000 lines of code

o ~20 academic developers

o 8 hackathons in 2020-2022, 1 Inria ADT

Semestre thématique IHP Geometry and Statistics in Data Science
Hackathon IHP Oct 17-21+ Journée Math & entreprises Nov 08, 2022

Geomstats

Simple examples of manifolds include the sph

Data from many appli fields are element
rotations SO(3), or the manifold of 3D r
performing statistical learning on articul
examples of data that belong to manifolds are introduce

omputing the mean of
matrix. Statistics for
consistent operations.

Interest in Machine Learning
o Miolane, Guigui, et al. SciPy Int. Conf. (2020).
o Miolane et al. Journal of Machine Learning Research (2020)

o Guigui, Miolane, Pennec. Intro. to Riem. Geom. and Geom. Stats: from
basic theory to implementation with Geomstats. Monography of 164 p.
Foundations and Trends in Machine Learning (2023, 16 (3):329-493).

N. Miolane A.Le Brigant X.Pennec |L.Pereira. |J. Deschamps. A. Myers. J. Mathe A, Calissano

[

and many more collaborators
[ B
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http://geomstats.ai/

Taylor expansion of geodesic triangles in
Riemannian manifolds: a central tool to study the
effect of curvature in geometric statistics

Motivations

Empirical Fréchet mean concentration
[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]

Numerical accuracy of parallel transport algorithms

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport
on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022 ]

Conclusions
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Intrinsic Taylor expansions
of geodesic triangles in manifolds

A new tool for the analysis of algorithms on manifolds
o Double exponential (Gavrilov) and neighboring log are simple tensor series!
o Also valid in affine connection spaces (Lie groups with CS connection)

Numerical accuracy of discrete parallel transport methods
o Jacobi field/fanning scheme is limited to order 1
o Schild’s ladder can be made of order 2
o Simpler pole ladder is order 2 + exact in one step in symmetric spaces

Riemannian manifolds with no closed-form geodesics
o Computing geodesics by integration and log by gradient descent
o Theorems continue to hold, implementation available in

o leg-by-gradient-deseent: natural schemes for mid-point/doubling rule?

Numerical accuracy of other geodesics-based algorithms?

X. Pennec — ENSAE - 12/10/2023 36
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Empirical and population means: curvature?

Curvature-covariance controls bias and concentration modulation
o Bias on empirical mean (gradient of curvature-covariance)

1
Bias(x,) = E(logf(fn)) =< (M,: VR:M,) + 0(e>,1/n?)
o Concentration rate modulated by the curvature-covariance:
1 1
Cov(%,) = E(logz(%,) ® logz(%,)) = —My + oMy R M + 0(e> 1/n?)

o Faster convergence (asymptotically infinitely) for negative curvature
o Slower convergence (up to no convergence at KKC limit) in positive curvature

Lesson for Al: high curvature has drastic impact with small data!
o High concentration and asymptotic predictions are confirmed by real data

o Lower concentration: prelude to stickiness / smeariness
[Hotz et al 2013] [Huckemann & Eltzner 2019, 2020]

Curvature at a peint distribution: deviation from Euclidean CLT?
o Distributional torsion: lim n Bias(x,,) = %ﬂﬁzz VR: M, + 0(e>)

n—>0o

o Distributional curvature: lim n Cov(x,,) — Cov(x) = %E[Rz: R: M, +0(e®)
n—->00o

o Differs from Efron’s “statistical curvature” of a family of distributions [Efron, AoS 1975]

e————elation to coarse [Ollivier 07,09] & synthetic Ricci curvatures [Sturm 06 Lott-Villani 09]7
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The G-Statistics group
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|
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Global, dimension-free
convergence of first-order methods
for Bures-Wasserstein barycenters

Uimin = al4}
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Averaging on non-Euclidean spaces

For a metric-measure space (X, dy, P), the barycenter problem asks

min Jd)%(b, x)dP(x)
beX

Existence and uniqueness?
Statistical convergence?

Algorithms??

[Fréchet '48, Karcher '77]



~

Barycenters and geometry e

Suppose (X, dy) is complete, geodesic metric space. For each: _____
P € P,(X,dy), let o

Fp(b) := Jd)%(b,x)dP(x)

Then F) is 1-geodesically convex for all P € &,(X, dy) if and only
if (X, dy) is non-positively curved (in sense of Alexandrov)

1
Fp(r(0) < (1 = Fp(r(0) + tFp(y(1)) = (1 - Nd;(y(0), y(1))

[Sturm 03]

-

y(l).~



Barycenters in NPC spaces

Suppose (X, dy) is an NPC space. For each P € &,(X, dy), let

Fp(b) := Jd)%(b,x)dP(x)

Then:

Existence and uniqueness
Statistical convergence
Algorithms

[Sturm 03, Bhattacharya, Patrangenaru ‘06, Le Gouic,
Paris, Rigollet, and Stromme 22, Brunel, Serres '23]




Barycenters in NNC spaces FOLxTy
::“yf;)\y(t)a-‘/y./;
Suppose (X, dy) is a NNC space, so '

N
~ »
......

1
di(y(1), x) = (1 = )dg(r(0), x) + tdi(y(1), x) - Et(l — )di(r(0), (1))

Then:
Existence and uniqueness?
Statistical convergence?

Algorithms?

[Bhattacharya, Patrangenaru 06, Afsari *11]



Barycenters in NNC spaces Xy
::\yg)\ﬂf)‘"-‘/yf';
Suppose (X, dy) is a NNC space, so '

N
~ »
......

1
di(y(1), x) = (1 = )dg(r(0), x) + tdi(y(1), x) - Et(l — 0)di(y(0), y(1)) .

Then:

: : N
Existence and uniqueness: Can restrict to a small ball, but

Statistical convergence? that isn’t completely satisfying

Algorithms?

[Bhattacharya, Patrangenaru 06, Afsari "11]



The Wasserstein space

WZ(//t’ I/) = min (J HX T yuzdﬂ(xa Y))l/z Wz(Rd) . — (QZ(Rd)a Wz)

rell(u,v)

Endows space of probability distributions with a
Riemannian-like geometry:

* [angent spaces, exponential maps, geodesics,
calculus

 Fundamental in PDEs, functional inequalities,
geometry of non-smooth spaces

 Fundamental for sampling algorithms

IMcCann 97, Jordan, Kindelehrer, and Otto 98, Otto and Villani 00, Otto
'01, Sturm ’06, Lott and Villani 06, Ambrosio, Gigli, and Savare '08]



The Wasserstein space is NNC

WZ(//ta I/) = min (J HX T yuzdﬂ(xa y))l/2 Wz(Rd) . — (QZ(Rd)a Wz)

rell(u,v)

The Wasserstein space W, (! 4y is non-negatively
curved:

1
W5y (1), ) = (1 — 0)ds(y(0), u) + tW(y(1), u) — 11 = HW(r(0), 7(1)).

[Otto ’01, Ambrosio, Gigli, and Savare ’08]



Wasserstein barycenters

Given P € P(P,(RY))

min [sz(b,ﬂ) dP(p)
beP,(RY)

e Graphics

 Bayesian statistics

* [ransfer learning

* Irajectory reconstruction AC’11, CD’14, CFTR’16, AC’17, LGL'17, ZP’19,
KSS’19, ALP’18, S'03, 0’12, Y’16, S’18, CCS’19,
. CAD’19, ABA'21, ABA'21, BVFR'22, ABA'22, CDM’22,

[Solomon et al ’15] JRE’23, +



Wasserstein barycenters ST X TN

s y(1) ' N
AR y(t) L
Given P € P(P,(R?)), solve . L e ;

min Jsz(b, wdP(w) 0 T
be P,(RY)

Surprisingly, the NNC is rather benign:
Existence and uniqueness (under mild conditions)
Statistical convergence (under various conditions)

Algorithms (this talk)

[Agueh and Carlier 11, Kroshnin, Spokoiny, Suvorikova 19, Ahidar-
Coutrix, Le Gouic, Paris '20, Carlier, Delalande, Merigot 22]



First-order methods for Wasserstein barycenters

How to solve

min  Fp(b) 1= JWZZ(b, 1) dP(u)?
beP,(RY)

(Cuturi and Doucet '14): gradient descent using the Wasserstein geometry!

Vi, Fp(b) = [( Vy_, —id)dP(u), by = (1 — n)id + 1, Vi, Fp(b))yb,

[Cuturi and Doucet '14]



Curse of dimensionality for Wasserstein space

Unfortunately, this won’t work in high dimensions without oT
further assumptions:

Computational curse of dimensionality: Altschuler and

Boix-Adsera showed Wasserstein barycenters are NP-hard . o
Curse of dimensionality

Statistical curse of dimensionality: Discretization with n
samples entails unavoidable statistical error n= /¢

Non-optimal Parametric
couplings classes

[Dudley ‘69, Niles-Weed and Rigollet 21, Altschuler, Boix-Adsera '22]



Restricting to Gaussians

oT
Multivariate Gaussians form an especially well-
behaved subset of W,(l 4y
» Totally geodesic subset (i.e. convex) Curse of dimensionality
* Closed form for distances
2 _ 1/2 1/2\1/2

W5(2g, Z) = tr(2g) + tr(X;) — 2tr((Zy 212y ) ).

* Closed form for geodesics Non-optimal - Barametric.-
couplings ~. Classes .~

EO—> { 1= 26 1/2(2(1)/2212(1)/2) 1/226 1/2

S =1 =02+, +t(1 —HZoZo 1 + Zo_1Z0)



The Bures-Wasserstein manifold

A non-negatively curved Riemannian manifold on the
set of positive-definite matrices

3,:=({TeR™: =313 >0},W,)

Many connections and uses:

» theory of deep learning/implicit regularization
* Pre-conditioner for OT in applications

e SDP solvers

[Bures 69, Knott, Smith ’94, Burer, Monteiro 03, Burer, Monteiro ’05,

Alvarez-Esteban et al ‘16, Bhatia, Jain and Lim 19, Kroshnin, Spokoiny,
Suvorikova ’19]



Riemannian gradient descent for BW barycenters

Can explicitly compute the gradient of the BW )
barycenter functional
VWQ FuZ) = J2;1/2(23/2223/2)1/22;1/2(11)(2)' ; L?
And the GD update with step-size 7, % %
1 = U=V FpENZA =,V FuE)
Converges quickly in practice o s

n

Plot of convergence vs iterations
from Alvarez-Esteban et al ’16

[Alvarez-Esteban et al ‘16]



Non-convexity of BW barycenter functional

Bures geodesic
Euclidean geodesic

0.2

0.4

0.6 0.8

1.0



mm GD =3

Dimension-free, global, linear rates for GD
ZH_I _ ( 7_ ;/]t VWZ FP (Zt))Zt ( 7_ ;/]t sz FP (Zt)) - Number of passes to convergence

Theorem. (CMRS’20, ACGS’21) 1 SCD s

Suppose P is supported on centered
Gaussians with eigenvalues in the range

o, ﬁ] Then GD with step-size 10}
n, = al2f convergesas | s
37T « ! 200 100 600 300 1000
dimension
FEp) = FE) < exp( — - (5)7) - (FE0) ~ FE)),

[Chewi, Maunu, Rigollet, Stromme ’20,
Altschuler, Chewi, Gerber, Stromme ’21]



mm GD r=3

Dimension-free, global, linear rates for GD
ZH_I _ ( 7_ 7]t VWZ FP (Zt))Et ( 7_ 7’]t sz FP (Zt)) - Number of passes to convergence

Theorem. (CMRS’20, ACGS’21) D b

201
Suppose P is supported on centered
Gaussians with eigenvalues in the range

|, []. Then GD with step-size 10y
n, = al2f convergesas | esseeccssssssss
3T ! 200 100 600 300 1000
dimension
FEp) — FZ,) <exp( — o (5)5/2) C(F(Z) - F(Z,)).

In fact, this holds for the average
condition numbers

[Chewi, Maunu, Rigollet, Stromme ’20, a = ([\/ /lnmn(Z)CUD(Z))2 p = (J\/ﬂmax(i)dP(Z))z.

Altschuler, Chewi, Gerber, Stromme 21}




Dimension-free, global rates for SGD

Number of passes to convergence

N 1/2/51/2 1/2\1/2x—1/2 301 |
S, =2, (27X, ) =
mr GD r=5
SGD r=5
21 = = n5)2 — nS5)) A
Theorem. (CMRS’20, ACGS’21) 0|
Suppose P iS SuppOrted On Centered (AR AR R RN
. . . . _
Gaussians with eigenvalues in the range |
[, ’5] Then 0 200 100 600 300 1000

dimension

46N\, o7
_[sz(zTa 2*)] < (7'6)767

[Chewi, Maunu, Rigollet, Stromme ’20,
Altschuler, Chewi, Gerber, Stromme ’21]



Proof strategy

—— Bures geodesic

Euclidean geodesic

. 1.20-
The NNC of Bures-Wasserstein space makes the
barycenter functional non-convex, but is also S1.15
automatically makes it 1-smooth: @)
| L'1.10
Fp(Z) < Fp(Zg) + (VFp(Z)), logs (B, + - W5 (Z0. 2) 4 o5
0.0 0.2

It Is kKnown from convex optimization that under
smoothness, strong convexity can be weakened to
a quantitative condition known as a Polyak-
kojasiewicz inequality

[Otto, Villani ’00, Karimi, Nutini, Schmidt ’16]

0.4

0.6 0.8

1.C



A Polyak-kojasiewicz (PL) inequality

PL inequalities are a very useful tool to make the f ()C)
following statement quantitative:

“First-order critical points are global optima”

We say a function f: X — R satisfies a PL
inequality with constant Cpp

f(x) — inf f(x) < CpL ||V f0)]|2

xeX

PL inequalities are a weak form of strong convexity
that still imply similar optimization results

[Otto, Villani ’00, Karimi, Nutini, Schmidt ’16]



PL inequalities are a very useful tool to make the
following statement quantitative:

“First-order critical points are global optima”

We say a function f: X — R satisfies a PL
inequality with constant Cpp

f(x) — inf f(x) < CpL ||V f0)]|2

xeX

PL inequalities are a weak form of strong convexity
that still imply similar optimization results

[Otto, Villani ’00, Karimi, Nutini, Schmidt ’16]

A Polyak-kojasiewicz (PL) inequality

J(x)

For the OT crowd: log-
Sobolev is a PL inequality
while displacement convexity
IS strong convexity



A variance (or quadratic growth) inequality

Suppose P is supported on centered Gaussians with
eigenvalues in the range |, /], and

\ fx)

Fp(Z,) = mig Fp(2) := JW%(E, >NdP(Z) .
2>

Proposition. (CMRS’20) Then we have a variance
inequality for all 2> > ()

p

I 2
‘~ 2(29 Z*) < I
0

> (Fp(2) — Fp(2y))

[Otto, Villani 00, Sturm 03, Karimi, Nutini, Schmidt ’16]



PL inequality for the BW barycenter functional

Suppose P is supported on centered Gaussians with

eigenvalues in the range |, /], and

Bures geodesic
Euclidean geodesic

1.20-
FAZ,) = min Fy(2) i= [ WHEZ0PE).
=0 L1.10
Proposition. (CMRS’20) If 2 also has 1.05- .
eigenvalues in the range |, f] then 0.0 02

Fu(®) - FuEy) < 2(2) IV Fr )|

04

[Agueh and Carlier '11, Chewi, Maunu, Rigollet, Stromme ’20]
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Trapping iterates

Proposition. (ACGS’20) If 2. also has
eigenvalues in the range |, /] then

Fu(®) — FiEy) < 22 IV Ep )|

04

Want this to hold along the optimization
trajectory, else the PL constant will
blow up

r---------------

[Massart, Hendricx, and Absil °19, Chewi, Maunu, Rigollet, Stromme ’20]



Trapping iterates

Proposition. (ACGS’20) If 2. also has
eigenvalues in the range |, /] then

Fu(®) — FiEy) < 22 IV Ep )|

04

Want this to hold along the optimization
trajectory, else the PL constant will
blow up

Intuitively, we want to keep the
iterates in a part of the manifold with
bounded curvature

r---------------

[Massart, Hendricx, and Absil °19, Chewi, Maunu, Rigollet, Stromme ’20]



Trapping iterates: SGD

In fact, the functionals —+4/A._.... and /A

geodesically convex

min max /€
Enough to analyze SGD, since each new iteration

moves along a geodesic to a point in supp(P)

ZtSle = eXPysan(2, 10g5san(X)))

r---------------

[Agueh, Carlier 11, Bhatia, Jain, and Lim ’19]



Trapping iterates: SGD

In fact, the functionals —4/4, ;. and y/4, ... are
geodesically convex

Enough to analyze SGD, since each new iteration
moves along a geodesic to a point in supp(P)

ZtSle = eXPysan(2, 10g5san(X)))

However, this isn’t enough for GD, since it
moves along generalized geodesics:

ZSB — €XPZ§}D (Zﬂt [ lo gzg}D(X )dP (X) )

[Agueh, Carlier 11, Bhatia, Jain, and Lim ’19]




Trapping iterates: GD

Surprisingly, —4/4,,,:, is not convex along
generalized geodesics!

r---------------

[Agueh, Carlier ’11, Altschuler, Chewi, Gerber, Stromme '21]



Trapping iterates: GD

Surprisingly, —4/4,,,:, is not convex along

generalized geodesics!

We show this is an artifact of continuous vs.

discrete time plus non-smoothness of /lmin

Ultimately show a weaker statement: for all times

/Imin(Z?D) > al4

[Agueh, Carlier ’11, Altschuler, Chewi, Gerber, Stromme '21]

r---------------



Open problems

(Ahidar-Coutrix, Le Gouic, Paris '20): a geodesic y: [0,1] — (X, dy)
is (4., 4,,)-extendible if there exists a constant speed extension
Vi [=Ain 1 + 4o = (X, dy) suchthat 7|, = 7.

Suppose that P € P, ((X,dy)) and A, A, > 0. If P has a

1n° “*out

barycenter b, such that for all x € supp(P), the geodesic Vb, —x 1S

(4i1s Aqye)-€xtendible, then does [, obey a PL inequality with
CpL = CpL(Ains Aoud)?

Does this imply fast rates for the empirical barycenter?

[Ahidar-Coutrix, Le Gouic, Paris 20, Le Gouic, Paris, Rigollet, Stromme '22]
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